• Title/Summary/Keyword: keyword extraction

Search Result 192, Processing Time 0.019 seconds

Text Network Analysis and Topic Modeling of News Articles on Lonely Death (고독사에 관한 언론보도기사의 텍스트네트워크 분석 및 토픽모델링)

  • Kim, Chunmi;Choi, Seungbeom;Kim, Eun Man
    • Journal of Korean Academy of Rural Health Nursing
    • /
    • v.18 no.2
    • /
    • pp.113-124
    • /
    • 2023
  • Purpose: The number of households vulnerable to isolation increases rapidly as social ties decrease, raising concerns about the associated increase in lonely deaths. This study aimed to identify issues related to lonely deaths by analyzing South Korean news articles; and to provide evidence for their use in preventing and managing lonely deaths via community nursing. Methods: This exploratory study analyzed the structure and trends of meaning of lonely deaths by identifying the association between keywords in news articles and lonely deaths. In this study, we searched for all news articles on lonely deaths, covering the period from January 1, 2010, to May 31, 2023. Data preprocessing and purification were conducted, followed by top-keyword extraction, keyword network analysis and topic modeling. The retrieved articles were analyzed using R and Python software. Results: Four main topics were identified: "discovering and responding to lonely death cases", "lonely deaths ending in lonely funerals", "supportive policies to prevent lonely deaths among of older adults", and "local government activities to prevent lonely deaths and support vulnerable populations." Conclusion: Based on these findings, it can be concluded that lonely death is a complex social phenomenon that can be prevented if society shows concern and care. Education related to lonely deaths should be included in nursing curricula for concrete action plans and professional development.

Implementation of Picture Diary drawing Pictures through Keyword Extraction (키워드 추출을 통한 그림을 그려주는 그림일기의 구현)

  • Sung-Jun Lee;Jae-Jin Lee;Hye-Jin Kim;Ji-Yoon Yang;Kyung-Sook Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.179-184
    • /
    • 2023
  • As many people went through Corona, they began to be interested in picture diaries that record their daily lives. However, existing applications have many paid services, and it is difficult to write a picture diary for those who have difficulty drawing themselves. In this paper, an application was developed to solve these problems. Basically, drawing diary writing function is provided, drawing is provided in the hand drawing function to increase convenience, and AI drawing function is added to make it possible to draw through keywords for those who have difficulty drawing. In addition, the emotional analysis function was added so that one could see one's past emotional statistics through the statistical function.

Study on Extraction of Keywords Using TF-IDF and Text Structure of Novels (TF-IDF와 소설 텍스트의 구조를 이용한 주제어 추출 연구)

  • You, Eun-Soon;Choi, Gun-Hee;Kim, Seung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.2
    • /
    • pp.121-129
    • /
    • 2015
  • With the explosive growth of information about books, there is a growing number of customers who find it difficult to pick a book. Against the backdrop, the importance of a book recommendation system becomes greater, through which appropriate information about books could be offered then to encourage customers to buy a book in the end. However, existing recommendation systems based on the bibliographical information or user data reveal the reliability issue found in their recommendation results. This is why it is necessary to reflect semantic information extracted from the texts of a book's main body in a recommendation system. Accordingly, this paper suggests a method for extracting keywords from the main body of novels, as a preceding research, by using TF-IDF method as well as the text structure. To this end, the texts of 100 novels have been collected then to divide them into four structural elements of preface, dialogue, non-dialogue and closing. Then, the TF-IDF weight of each keyword has been calculated. The calculation results show that the extraction accuracy of keywords improves by 42.1% in performance when more weight is given to dialogue while including preface and closing instead of using just the main body.

Analysis and Prediction of Trends for Future Education Reform Centering on the Keyword Extraction from the Research for the Last Two Decades (미래교육 혁신을 위한 트렌드 분석과 예측: 20년간의 문헌 연구 데이터를 기반으로 한 키워드 추출 분석을 중심으로)

  • Jho, Hunkoog
    • Journal of Science Education
    • /
    • v.45 no.2
    • /
    • pp.156-171
    • /
    • 2021
  • This study aims at investigating the characteristics of trends of future education over time though the literature review and examining the accuracy of the framework for forecasting future education proposed by the previous studies by comparing the outcomes between the literature review and media articles. Thus, this study collects the articles dealing with future education searched from the Web of Science and categorized them into four periods during the new millennium. The new articles from media were selected to find out the present of education so that we can figure out the appropriateness of the proposed framework to predict the future of education. Research findings reveal that gradual tendencies of topics could not be found except teacher education and they are diverse from characteristics of agents (students and teachers) to the curriculum and pedagogical strategies. On the other hand, the results of analysis on the media articles focuses more on the projects launched by the government and the immediate responses to the COVID-19, as well as educational technologies related to big data and artificial intelligence. It is surprising that only a few key words are occupied in the latest articles from the literature review and many of them have not been discussed before. This indicates that the predictive framework is not effective to establish the long-term plan for education due to the uncertainty of educational environment, and thus this study will give some implications for developing the model to forecast the future of education.

Analysis of Major COVID-19 Issues Using Unstructured Big Data (비정형 빅데이터를 이용한 COVID-19 주요 이슈 분석)

  • Kim, Jinsol;Shin, Donghoon;Kim, Heewoong
    • Knowledge Management Research
    • /
    • v.22 no.2
    • /
    • pp.145-165
    • /
    • 2021
  • As of late December 2019, the spread of COVID-19 pandemic began which put the entire world in panic. In order to overcome the crisis and minimize any subsequent damage, the government as well as its affiliated institutions must maximize effects of pre-existing policy support and introduce a holistic response plan that can reflect this changing situation- which is why it is crucial to analyze social topics and people's interests. This study investigates people's major thoughts, attitudes and topics surrounding COVID-19 pandemic through the use of social media and big data. In order to collect public opinion, this study segmented time period according to government countermeasures. All data were collected through NAVER blog from 31 December 2019 to 12 December 2020. This research applied TF-IDF keyword extraction and LDA topic modeling as text-mining techniques. As a result, eight major issues related to COVID-19 have been derived, and based on these keywords, this research presented policy strategies. The significance of this study is that it provides a baseline data for Korean government authorities in providing appropriate countermeasures that can satisfy needs of people in the midst of COVID-19 pandemic.

Research on major technology trends in the field of financial security through Korea and foreign patent data analysis (국내외 특허 데이터 분석을 통한 금융보안 분야 주요 기술 동향 분석연구)

  • Chae, Ho-Kuen;Lee, Jooyeoun
    • Journal of Digital Convergence
    • /
    • v.18 no.6
    • /
    • pp.53-63
    • /
    • 2020
  • Electronic financial transactions are also actively increasing due to the rapid spread of information communication media such as the Internet, smart devices, and IoT, but as a derivative by-product, threats of financial security such as leakage of various personal information and hacking are also increasing. Therefore, the importance of financial security against this is increasing, but in Korea, financial security technology is relatively insufficient compared to advanced countries in the field of financial security, such as Active-X. Therefore, this study aims to present the major development direction in the domestic financial security field by comparing key technology trends with IPC classification frequency analysis, keyword frequency analysis, and keyword network analysis based on domestic and foreign financial security-related patent data. In conclusion, it seems that recent domestic and foreign trends have focused on the development of related technologies according to the development of smart device-based electronic financial services. Accordingly, it is intended to be used as the basis data for technology development of financial security by mapping the trend of financial security research trend and technology trend analysis through thesis data analysis that reflects the research of the preceding aspect as the technology of commercialization in the future.

Analysis of Major Changes in Press Articles Related to 'High School Credit System'

  • Kwon, Choong-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.7
    • /
    • pp.183-191
    • /
    • 2020
  • The purpose of this study is to objectively analyze the trend of media articles related to the 'high school credit system' (2017~2019: 3 years), which has become the biggest concern among Korean education policies, through BIGKinds, a news data big data analysis service for media companies. The main research methodologies were BIGKinds system's specific search term news search, news trend analysis, keyword extraction and wordcloud implementation, network analysis and network picture presentation. The research results are as follows; First, the number of articles related to the high school credit system that appeared in major media outlets in Korea for 3 years from 2017 to 2019 was 3,649. The number of articles was sharply increased at a certain point about 4 times, based on the government's announcement of related policies. It showed an increasing news trend. Second, the top 20 keywords that emerged from the press articles related to the high school credit system for 3 years of analysis were presented, and it was confirmed that the keyword change by year appeared. Third, the network of media articles related to the high school credit system was visualized and presented in different ways by person, institution, and keyword. The results of this study confirmed that the high school credit system education policy was adopted as the representative education policy of the Moon Jae-in government, and is proceeding in the policy decision stage and policy implementation stage.

A Method for Detecting Event-Location based on Similar Keyword Extraction in Tweet Text (트윗 텍스트의 유사 키워드 추출을 통한 이벤트 지역 탐지 기법)

  • Yim, Junyeob;Ha, Hyunsoo;Hwang, Byung-Yeon
    • Spatial Information Research
    • /
    • v.23 no.5
    • /
    • pp.1-7
    • /
    • 2015
  • Twitter has the fast propagation and diffusion of information compare to other SNS. Therefore, many researches about detecting real-time event using twitter are progressing. Twitter real-time event detecting system assumes every twitter user as a sensor and analyzes their written tweet in order to detect the event. Researches that are related to this twitter have already obtained good results but confronted the limits because of some problems. Especially, many existing researches are using the method that can trace an event location by using GPS coordinate. However, it can be suggested a definite limitation through the present user's skeptical responses about making personal location information public. Therefore, this paper suggests the method that traces the location information in tweet contents text without using the provided location information from twitter. Associated words were grouped by using the keyword that extracted in tweet contents text. The place that the events have occurred and whether the events have surely occurred are detected by this experiment using this algorithm. Furthermore, this experiment demonstrated the necessity of the suggested methods by showing faster detection compare to the other existing media.

Dynamic ontology construction algorithm from Wikipedia and its application toward real-time nation image analysis (국가이미지 분석을 위한 위키피디아 실시간 동적 온톨로지 구축 알고리즘 및 적용)

  • Lee, Youngwhan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.4
    • /
    • pp.979-991
    • /
    • 2016
  • Measuring nation images was a challenging task when employing offline surveys was the only option. It was not only prohibitively expensive, but too much time-consuming and therefore unfitted to this rapidly changing world. Although demands for monitoring real-time nation images were ever-increasing, an affordable and reliable solution to measure nation images has not been available up to this date. The researcher in this study developed a semi-automatic ontology construction algorithm, named "double-crossing double keyword collection (or DCDKC)" to measure nation images from Wikipedia in real-time. The ontology, WikiOnto, can be used to reflect dynamic image changes. In this study, an instance of WikiOnto was constructed by applying the algorithm to the big-three exporting countries in East Asia, Korea, Japan, and China. Then, the numbers of page views for words in the instance of WikiOnto were counted. A collection of the counting for each country was compared to each other to inspect the possibility to use for dynamic nation images. As for the conclusion, the result shows how the images of the three countries have changed for the period the study was performed. It confirms that DCDKC can very well be used for a real-time nation-image monitoring system.

Analyzing the Trend of False·Exaggerated Advertisement Keywords Using Text-mining Methodology (1990-2019) (텍스트마이닝 기법을 활용한 허위·과장광고 관련 기사의 트렌드 분석(1990-2019))

  • Kim, Do-Hee;Kim, Min-Jeong
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.4
    • /
    • pp.38-49
    • /
    • 2021
  • This study analyzed the trend of the term 'false and exaggerated advertisement' in 5,141 newspaper articles from 1990 to 2019 using text mining methodology. First of all, we identified the most frequent keywords of false and exaggerated advertisements through frequency analysis for all newspaper articles, and understood the context between the extracted keywords. Next, to examine how false and exaggerated advertisements have changed, the frequency analysis was performed by separating articles by 10 years, and the tendency of the keyword that became an issue was identified by comparing the number of academic papers on the subject of the highest keywords of each year. Finally, we identified trends in false and exaggerated advertisements based on the detailed keywords in the topic using the topic modeling. In our results, it was confirmed that the topic that became an issue at a specific time was extracted as the frequent keywords, and the keyword trends by period changed in connection with social and environmental factors. This study is meaningful in helping consumers spend wisely by cultivating background knowledge about unfair advertising. Furthermore, it is expected that the core keyword extraction will provide the true purpose of advertising and deliver its implications to companies and related employees who commit misconduct.