• 제목/요약/키워드: keyword dictionary

검색결과 35건 처리시간 0.022초

포털사이트의 사전과 학술정보 연계 검색 방안 연구 (A Study on Service Integration of Research Information and Dictionary in Portal Site)

  • 양창진
    • 정보관리학회지
    • /
    • 제28권1호
    • /
    • pp.7-22
    • /
    • 2011
  • 포털사이트는 검색엔진을 넘어 사이버스페이스 자체를 의미할 정도로 개념과 영역이 확대되었다. 일반인들뿐만 아니라, 필요로 하는 학술정보가 서비스되기 때문에 연구자도 포털사이트를 많이 이용한다. 그동안 포털의 검색은 얼마나 많은 정보를 검색하게 해 줄 것인가 하는 양적인 면에 관심을 두었다. 그러나 최근에는 검색의 질에 보다 관심이 많아지고 있다. 이 논문은 포털이 제공하는 학술정보검색의 문제점을 분석하고, 비교적 신뢰성을 인정받는 사전 서비스와 학술정보를 연계함으로써 학술정보검색의 질을 향상하기 위한 시범적인 시도이다. 즉, 검증되고 압축적으로 정리된 사전의 표제어와 해당 표제어를 키워드로 하는 권위 있는 연구 성과를 연계시킴으로써, 사전을 검색할 때 주제어 관련 연구 성과까지 검색할 수 있게 하는 방안을 제시하고자 한다.

사용자 영화평의 감정어휘 분석을 통한 영화검색시스템 (Movie Retrieval System by Analyzing Sentimental Keyword from User's Movie Reviews)

  • 오성호;강신재
    • 한국산학기술학회논문지
    • /
    • 제14권3호
    • /
    • pp.1422-1427
    • /
    • 2013
  • 본 논문에서는 사용자가 작성한 영화평으로부터 추출한 감정어휘에 기반한 영화검색시스템을 제안한다. 먼저, 사용자의 영화평을 형태소분석하고 수작업으로 감정어휘사전을 구축한다. 그 다음, 검색의 대상이 되는 영화별로 감정어휘사전에 포함되어 있는 감정어휘들의 가중치를 TF-IDF를 이용하여 계산한다. 이러한 결과를 이용하여 제안 시스템은 영화의 감정 분류를 결정하고, 랭킹하여 사용자에게 보여주게 된다. 사용자들은 영화평을 읽지 않고도, 감정 어휘로 구성된 질의어를 입력하여 원하는 영화를 찾을 수 있게 된다.

대화 말뭉치 구축을 위한 반자동 의미표지 태깅 시스템 (A Semi-Automatic Semantic Mark Tagging System for Building Dialogue Corpus)

  • 박준혁;이성욱;임윤섭;최종석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권5호
    • /
    • pp.213-222
    • /
    • 2019
  • 지능형 음성 대화 인터페이스 구현에 있어 핵심어의 의미표지는 사용자 의도 파악을 위한 중요한 요소이다. 대화시스템은 사용자 발화의 의도를 파악하기 위해 핵심어와 그 의미표지를 이용하여 발화의 의도를 결정한다. 하나의 핵심어는 여러 개의 의미표지를 가질 수 있는 중의성을 지닌다. 이러한 중의성을 지닌 핵심어를 사용자의 의도와 일치하는 의미표지로 결정하는 것은 단어 의미 분별 문제와 유사하다. 우리는 전사된 대화 말뭉치의 약 23%를 수동으로 의미를 부착하여 핵심어에 대한 의미표지 사전, 유의어 사전, 문맥벡터 사전을 먼저 구축한 후, 나머지 77% 대화 말뭉치에 존재하는 핵심어의 의미를 자동으로 부착한다. 중의성을 가진 핵심어는 문맥벡터 사전으로부터 문맥 벡터 유사도를 계산하여 의미를 결정한다. 핵심어가 미등록어인 경우에는 유의어 사전을 이용하여 가장 유사한 핵심어를 찾아 그 핵심어의 의미를 부착한다. 중의성을 가진 고빈도 핵심어 3개와 저빈도 핵심어 3개를 말뭉치에서 선정하여 제안 시스템의 성능을 평가하였다. 실험결과, 수동으로 구축한 말뭉치를 사용하였을 때 약 54.4%의 정확도를 얻었고, 반자동으로 확장한 말뭉치를 사용하였을 때 약 50.0%의 정확도를 얻었다.

Automatic In-Text Keyword Tagging based on Information Retrieval

  • Kim, Jin-Suk;Jin, Du-Seok;Kim, Kwang-Young;Choe, Ho-Seop
    • Journal of Information Processing Systems
    • /
    • 제5권3호
    • /
    • pp.159-166
    • /
    • 2009
  • As shown in Wikipedia, tagging or cross-linking through major keywords in a document collection improves not only the readability of documents but also responsive and adaptive navigation among related documents. In recent years, the Semantic Web has increased the importance of social tagging as a key feature of the Web 2.0 and, as its crucial phenotype, Tag Cloud has emerged to the public. In this paper we provide an efficient method of automated in-text keyword tagging based on large-scale controlled term collection or keyword dictionary, where the computational complexity of O(mN) - if a pattern matching algorithm is used - can be reduced to O(mlogN) - if an Information Retrieval technique is adopted - while m is the length of target document and N is the total number of candidate terms to be tagged. The result shows that automatic in-text tagging with keywords filtered by Information Retrieval speeds up to about 6 $\sim$ 40 times compared with the fastest pattern matching algorithm.

비주얼 검색을 위한 위키피디아 기반의 질의어 추출 (Keyword Selection for Visual Search based on Wikipedia)

  • 김종우;조수선
    • 한국멀티미디어학회논문지
    • /
    • 제21권8호
    • /
    • pp.960-968
    • /
    • 2018
  • The mobile visual search service uses a query image to acquire linkage information through pre-constructed DB search. From the standpoint of this purpose, it would be more useful if you could perform a search on a web-based keyword search system instead of a pre-built DB search. In this paper, we propose a representative query extraction algorithm to be used as a keyword on a web-based search system. To do this, we use image classification labels generated by the CNN (Convolutional Neural Network) algorithm based on Deep Learning, which has a remarkable performance in image recognition. In the query extraction algorithm, dictionary meaningful words are extracted using Wikipedia, and hierarchical categories are constructed using WordNet. The performance of the proposed algorithm is evaluated by measuring the system response time.

Efficient Keyword Extraction from Social Big Data Based on Cohesion Scoring

  • Kim, Hyeon Gyu
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권10호
    • /
    • pp.87-94
    • /
    • 2020
  • 블로그나 SNS 피드 등의 소셜 리뷰는 고객 관점의 의견이나 불만 사항을 반영한 키워드를 추출하기 위한 목적으로 광범위하게 활용되고 있으며, 최근 트렌드를 반영한 신조어나 고유명사를 포함하는 경우가 많다. 이들 단어는 사전에 포함되어 있지 않아 기존 형태소 분석기가 잘 인지하지 못하는 경우가 많으며, 동시에 상당한 처리 시간이 소요되어 키워드 분석 결과를 실시간으로 제공하는데 어려움이 있다. 본 논문에서는 응집도 점수 개념을 기반으로 소셜 리뷰로부터 키워드를 효율적으로 추출하기 위한 방법을 제안한다. 응집도 점수는 단어의 빈도수를 기반으로 계산되어 별도의 사전이 필요없다는 장점이 있으나, 띄어쓰기가 되지 않은 입력 데이터에 대해서는 정확도가 떨어질 수 있다. 이와 관련하여 본 논문에서는 단어 트리 구조를 이용하여 기존의 응집도 점수 계산 방법을 개선한 알고리즘을 제시한다. 또한 실험을 통해 제안하는 방법이 15.5%의 오류율을 보이는 동시에, 1,000개의 리뷰를 처리하는데 0.008초 정도 소요됨을 확인하였다.

비감독 학습 기법에 의한 한국어의 키워드 추출 (Keyword Extraction in Korean Using Unsupervised Learning Method)

  • 신성윤;이양원
    • 한국정보통신학회논문지
    • /
    • 제14권6호
    • /
    • pp.1403-1408
    • /
    • 2010
  • 한국어 정보검색에서는 문서를 대표하는 색인어 또는 키워드로서 명사를 사용하는데, 이러한 명사 및 키워드 추출이란 문서 내에 존재하는 모든 명사를 찾아내는 작업이다. 본 논문에서는 기 구축된 사전을 이용하여 키워드를 추출하는 방법을 제시한다. 이 방법은 불필요한 연산을 줄여서 수행 시간을 단축시켰다. 그리고 대용량의 문서에서도 정확도에 크게 영향을 미치지 않으면서 명사를 추출할 수 있다. 본 논문에서는 명사의 출현 특성을 이용한 명사추출 방법 및 비감독 학습 기법에 의한 키워드 추출 방법을 제시한다.

비감독 학습 기법에 의한 키워드 추출 (Keyword Extraction Using Unsupervised Learning Method)

  • 신성윤;백정욱;이양원
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 춘계학술대회
    • /
    • pp.165-166
    • /
    • 2010
  • 명사 추출이란 문서 내에 존재하는 모든 명사를 찾아내는 작업으로서, 한국어 정보검색에서는 문서를 대표하는 색인어 또는 키워드로서 명사를 사용한다. 본 논문에서는 기 구축된 사전을 이용하여 키워드를 추출하는 방법을 제시한다. 이 방법은 불필요한 연산을 줄여서 수행 시간을 단축시켰다. 그리고 대용량의 문서에서도 정확도에 크게 영향을 미치지 않으면서 명사를 추출할 수 있다. 본 논문에서는 명사의 출현 특성을 이용한 명사 추출 방법 및 비감독 학습 기법에 의한 키워드 추출 방법을 제시한다.

  • PDF

소셜 네트워크와 데이터 마이닝 기법을 활용한 학문 분야 중심 및 융합 키워드 추천 서비스 (Recommending Core and Connecting Keywords of Research Area Using Social Network and Data Mining Techniques)

  • 조인동;김남규
    • 지능정보연구
    • /
    • 제17권1호
    • /
    • pp.127-138
    • /
    • 2011
  • 대부분의 연구포털 사이트는 관심 분야의 논문을 획득하고자 하는 연구자를 대상으로 한 서비스를 주로 제공하고 있다. 하지만 이러한 서비스는 정확한 서지사항을 알고 있는 일부 사용자의 경우 손쉽게 이용할 수 있지만, 대부분의 이용자는 원하는 자료를 획득하기 위해 키워드 검색을 통한 반복적 시행착오를 겪게 된다. 특히 사용자가 익숙하지 않은 분야의 논문을 검색하는 경우에는, 찾고자 하는 논문의 적절한 키워드 자체를 알지 못하여 검색에 큰 어려움을 겪게 된다. 이러한 한계를 극복하기 위해 일부 연구포털 사이트에서는 온라인 쇼핑몰의 상품 추천에 주로 사용되어온 연관관계 분석 기반 키워드 추천 서비스를 채택하고 있다. 하지만 연관관계 분석에만 기반한 키워드 추천 방식은 두 키워드간의 단편적인 관계만을 알려줄 뿐, 해당 학술 분야와 관련된 전체 키워드 간의 복합적 연결 관계를 보여주기에는 한계가 있다. 따라서 본 논문에서는 연관관계 분석을 통해 빈발 출현 키워드 쌍을 추출하고 이를 근거로 전체 키워드 간 네트워크를 구축함으로써, 학술 분야별 중심 키워드 및 분야 간 융합을 위한 연계 키워드를 추천하기 위한 방법을 제시하고자 한다.

Interactive Morphological Analysis to Improve Accuracy of Keyword Extraction Based on Cohesion Scoring

  • Yu, Yang Woo;Kim, Hyeon Gyu
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권12호
    • /
    • pp.145-153
    • /
    • 2020
  • 최근 소셜 빅데이터를 대상으로 한 키워드 분석은 고객 관점의 의견이나 불만 사항을 추출하기 위한 목적으로 광범위하게 활용되고 있다. 이와 관련하여, 이전 연구에서는 키워드 분석의 정확도를 높이기 위해 응집도 점수를 활용한 방법을 제안하였으나, 리뷰의 수가 적을 경우 오류율이 증가하는 문제가 있었다. 본 논문에서는 응집도 점수 기반 알고리즘으로부터 추출된 키워드에 대해 간소화된 형태소 분석 단계를 후처리 형태로 적용함으로써 키워드 추출의 정확도를 개선하고자 하였다. 제안 방법은 입력 데이터가 주어질 때마다 필요한 형태소 분석 규칙을 점증적으로 추가할 수 있도록 지원함으로써, 사전의 크기를 최소화하고 분석의 효율을 높이고자 하였다. 또한 대화형 규칙 입력 시스템을 제공하여 분석 규칙 추가에 드는 노력을 최소화하고자 하였다. 제안 방법을 검증하기 위해 온라인에서 수집된 실제 리뷰를 대상으로 실험을 수행하였으며, 제안 방법을 적용할 경우 오류율이 기존 10%에서 1%로 개선되는 동시에, 5,000개의 리뷰 처리에 450ms가 소요되어 실시간 처리가 가능한 수준임을 확인하였다.