포털사이트는 검색엔진을 넘어 사이버스페이스 자체를 의미할 정도로 개념과 영역이 확대되었다. 일반인들뿐만 아니라, 필요로 하는 학술정보가 서비스되기 때문에 연구자도 포털사이트를 많이 이용한다. 그동안 포털의 검색은 얼마나 많은 정보를 검색하게 해 줄 것인가 하는 양적인 면에 관심을 두었다. 그러나 최근에는 검색의 질에 보다 관심이 많아지고 있다. 이 논문은 포털이 제공하는 학술정보검색의 문제점을 분석하고, 비교적 신뢰성을 인정받는 사전 서비스와 학술정보를 연계함으로써 학술정보검색의 질을 향상하기 위한 시범적인 시도이다. 즉, 검증되고 압축적으로 정리된 사전의 표제어와 해당 표제어를 키워드로 하는 권위 있는 연구 성과를 연계시킴으로써, 사전을 검색할 때 주제어 관련 연구 성과까지 검색할 수 있게 하는 방안을 제시하고자 한다.
본 논문에서는 사용자가 작성한 영화평으로부터 추출한 감정어휘에 기반한 영화검색시스템을 제안한다. 먼저, 사용자의 영화평을 형태소분석하고 수작업으로 감정어휘사전을 구축한다. 그 다음, 검색의 대상이 되는 영화별로 감정어휘사전에 포함되어 있는 감정어휘들의 가중치를 TF-IDF를 이용하여 계산한다. 이러한 결과를 이용하여 제안 시스템은 영화의 감정 분류를 결정하고, 랭킹하여 사용자에게 보여주게 된다. 사용자들은 영화평을 읽지 않고도, 감정 어휘로 구성된 질의어를 입력하여 원하는 영화를 찾을 수 있게 된다.
지능형 음성 대화 인터페이스 구현에 있어 핵심어의 의미표지는 사용자 의도 파악을 위한 중요한 요소이다. 대화시스템은 사용자 발화의 의도를 파악하기 위해 핵심어와 그 의미표지를 이용하여 발화의 의도를 결정한다. 하나의 핵심어는 여러 개의 의미표지를 가질 수 있는 중의성을 지닌다. 이러한 중의성을 지닌 핵심어를 사용자의 의도와 일치하는 의미표지로 결정하는 것은 단어 의미 분별 문제와 유사하다. 우리는 전사된 대화 말뭉치의 약 23%를 수동으로 의미를 부착하여 핵심어에 대한 의미표지 사전, 유의어 사전, 문맥벡터 사전을 먼저 구축한 후, 나머지 77% 대화 말뭉치에 존재하는 핵심어의 의미를 자동으로 부착한다. 중의성을 가진 핵심어는 문맥벡터 사전으로부터 문맥 벡터 유사도를 계산하여 의미를 결정한다. 핵심어가 미등록어인 경우에는 유의어 사전을 이용하여 가장 유사한 핵심어를 찾아 그 핵심어의 의미를 부착한다. 중의성을 가진 고빈도 핵심어 3개와 저빈도 핵심어 3개를 말뭉치에서 선정하여 제안 시스템의 성능을 평가하였다. 실험결과, 수동으로 구축한 말뭉치를 사용하였을 때 약 54.4%의 정확도를 얻었고, 반자동으로 확장한 말뭉치를 사용하였을 때 약 50.0%의 정확도를 얻었다.
Kim, Jin-Suk;Jin, Du-Seok;Kim, Kwang-Young;Choe, Ho-Seop
Journal of Information Processing Systems
/
제5권3호
/
pp.159-166
/
2009
As shown in Wikipedia, tagging or cross-linking through major keywords in a document collection improves not only the readability of documents but also responsive and adaptive navigation among related documents. In recent years, the Semantic Web has increased the importance of social tagging as a key feature of the Web 2.0 and, as its crucial phenotype, Tag Cloud has emerged to the public. In this paper we provide an efficient method of automated in-text keyword tagging based on large-scale controlled term collection or keyword dictionary, where the computational complexity of O(mN) - if a pattern matching algorithm is used - can be reduced to O(mlogN) - if an Information Retrieval technique is adopted - while m is the length of target document and N is the total number of candidate terms to be tagged. The result shows that automatic in-text tagging with keywords filtered by Information Retrieval speeds up to about 6 $\sim$ 40 times compared with the fastest pattern matching algorithm.
The mobile visual search service uses a query image to acquire linkage information through pre-constructed DB search. From the standpoint of this purpose, it would be more useful if you could perform a search on a web-based keyword search system instead of a pre-built DB search. In this paper, we propose a representative query extraction algorithm to be used as a keyword on a web-based search system. To do this, we use image classification labels generated by the CNN (Convolutional Neural Network) algorithm based on Deep Learning, which has a remarkable performance in image recognition. In the query extraction algorithm, dictionary meaningful words are extracted using Wikipedia, and hierarchical categories are constructed using WordNet. The performance of the proposed algorithm is evaluated by measuring the system response time.
블로그나 SNS 피드 등의 소셜 리뷰는 고객 관점의 의견이나 불만 사항을 반영한 키워드를 추출하기 위한 목적으로 광범위하게 활용되고 있으며, 최근 트렌드를 반영한 신조어나 고유명사를 포함하는 경우가 많다. 이들 단어는 사전에 포함되어 있지 않아 기존 형태소 분석기가 잘 인지하지 못하는 경우가 많으며, 동시에 상당한 처리 시간이 소요되어 키워드 분석 결과를 실시간으로 제공하는데 어려움이 있다. 본 논문에서는 응집도 점수 개념을 기반으로 소셜 리뷰로부터 키워드를 효율적으로 추출하기 위한 방법을 제안한다. 응집도 점수는 단어의 빈도수를 기반으로 계산되어 별도의 사전이 필요없다는 장점이 있으나, 띄어쓰기가 되지 않은 입력 데이터에 대해서는 정확도가 떨어질 수 있다. 이와 관련하여 본 논문에서는 단어 트리 구조를 이용하여 기존의 응집도 점수 계산 방법을 개선한 알고리즘을 제시한다. 또한 실험을 통해 제안하는 방법이 15.5%의 오류율을 보이는 동시에, 1,000개의 리뷰를 처리하는데 0.008초 정도 소요됨을 확인하였다.
한국어 정보검색에서는 문서를 대표하는 색인어 또는 키워드로서 명사를 사용하는데, 이러한 명사 및 키워드 추출이란 문서 내에 존재하는 모든 명사를 찾아내는 작업이다. 본 논문에서는 기 구축된 사전을 이용하여 키워드를 추출하는 방법을 제시한다. 이 방법은 불필요한 연산을 줄여서 수행 시간을 단축시켰다. 그리고 대용량의 문서에서도 정확도에 크게 영향을 미치지 않으면서 명사를 추출할 수 있다. 본 논문에서는 명사의 출현 특성을 이용한 명사추출 방법 및 비감독 학습 기법에 의한 키워드 추출 방법을 제시한다.
명사 추출이란 문서 내에 존재하는 모든 명사를 찾아내는 작업으로서, 한국어 정보검색에서는 문서를 대표하는 색인어 또는 키워드로서 명사를 사용한다. 본 논문에서는 기 구축된 사전을 이용하여 키워드를 추출하는 방법을 제시한다. 이 방법은 불필요한 연산을 줄여서 수행 시간을 단축시켰다. 그리고 대용량의 문서에서도 정확도에 크게 영향을 미치지 않으면서 명사를 추출할 수 있다. 본 논문에서는 명사의 출현 특성을 이용한 명사 추출 방법 및 비감독 학습 기법에 의한 키워드 추출 방법을 제시한다.
대부분의 연구포털 사이트는 관심 분야의 논문을 획득하고자 하는 연구자를 대상으로 한 서비스를 주로 제공하고 있다. 하지만 이러한 서비스는 정확한 서지사항을 알고 있는 일부 사용자의 경우 손쉽게 이용할 수 있지만, 대부분의 이용자는 원하는 자료를 획득하기 위해 키워드 검색을 통한 반복적 시행착오를 겪게 된다. 특히 사용자가 익숙하지 않은 분야의 논문을 검색하는 경우에는, 찾고자 하는 논문의 적절한 키워드 자체를 알지 못하여 검색에 큰 어려움을 겪게 된다. 이러한 한계를 극복하기 위해 일부 연구포털 사이트에서는 온라인 쇼핑몰의 상품 추천에 주로 사용되어온 연관관계 분석 기반 키워드 추천 서비스를 채택하고 있다. 하지만 연관관계 분석에만 기반한 키워드 추천 방식은 두 키워드간의 단편적인 관계만을 알려줄 뿐, 해당 학술 분야와 관련된 전체 키워드 간의 복합적 연결 관계를 보여주기에는 한계가 있다. 따라서 본 논문에서는 연관관계 분석을 통해 빈발 출현 키워드 쌍을 추출하고 이를 근거로 전체 키워드 간 네트워크를 구축함으로써, 학술 분야별 중심 키워드 및 분야 간 융합을 위한 연계 키워드를 추천하기 위한 방법을 제시하고자 한다.
최근 소셜 빅데이터를 대상으로 한 키워드 분석은 고객 관점의 의견이나 불만 사항을 추출하기 위한 목적으로 광범위하게 활용되고 있다. 이와 관련하여, 이전 연구에서는 키워드 분석의 정확도를 높이기 위해 응집도 점수를 활용한 방법을 제안하였으나, 리뷰의 수가 적을 경우 오류율이 증가하는 문제가 있었다. 본 논문에서는 응집도 점수 기반 알고리즘으로부터 추출된 키워드에 대해 간소화된 형태소 분석 단계를 후처리 형태로 적용함으로써 키워드 추출의 정확도를 개선하고자 하였다. 제안 방법은 입력 데이터가 주어질 때마다 필요한 형태소 분석 규칙을 점증적으로 추가할 수 있도록 지원함으로써, 사전의 크기를 최소화하고 분석의 효율을 높이고자 하였다. 또한 대화형 규칙 입력 시스템을 제공하여 분석 규칙 추가에 드는 노력을 최소화하고자 하였다. 제안 방법을 검증하기 위해 온라인에서 수집된 실제 리뷰를 대상으로 실험을 수행하였으며, 제안 방법을 적용할 경우 오류율이 기존 10%에서 1%로 개선되는 동시에, 5,000개의 리뷰 처리에 450ms가 소요되어 실시간 처리가 가능한 수준임을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.