• Title/Summary/Keyword: key recovery attack

Search Result 36, Processing Time 0.025 seconds

Improved Conditional Differential Attacks on Round-Reduced Grain v1

  • Li, Jun-Zhi;Guan, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4548-4559
    • /
    • 2018
  • Conditional differential attack against NFSR-based cryptosystems proposed by Knellwolf et al. in Asiacrypt 2010 has been widely used for analyzing round-reduced Grain v1. In this paper, we present improved conditional differential attacks on Grain v1 based on a factorization simplification method, which makes it possible to obtain the expressions of internal states in more rounds and analyze the expressions more precisely. Following a condition-imposing strategy that saves more IV bits, Sarkar's distinguishing attack on Grain v1 of 106 rounds is improved to a key recovery attack. Moreover, we show new distinguishing attack and key recovery attack on Grain v1 of 107 rounds with lower complexity O($2^{34}$) and appreciable theoretical success probability 93.7%. Most importantly, our attacks can practically recover key expressions with higher success probability than theoretical results.

A Key Recovery Attack on HMAC using Fault Injection Attack (오류 주입 공격을 이용한 HMAC에 대한 키 복구 공격)

  • Jeong, Ki-Tae;Lee, Yu-Seop;Sung, Jae-Chul;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.5
    • /
    • pp.27-33
    • /
    • 2011
  • At FDTC'05 and CISC-W'10, the authors showed that if they decrease the number of rounds of AES and Triple-DES by using the fault injections, it is possible to recover the secret key of the target algorithms, respectively. In this paper, we propose a key recovery attack on HMAC by using the main idea of these attacks. This attack is applicable to HMAC based on MD-family hash functions and can recover the secret key with the negligible computational complexity. Particularly, the attack result on HMAC-SHA-2 is the first known key recovery attack result on this algorithm.

A Study on the Private Key Backup and Restoration using Biometric Information in Blockchain Environment

  • Seungjin, Han
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.3
    • /
    • pp.59-65
    • /
    • 2023
  • As research on blockchain applications in various fields is actively increasing, management of private keys that prove users of blockchain has become important. If you lose your private key, you lose all your data. In order to solve this problem, previously, blockchain wallets, private key recovery using partial information, and private key recovery through distributed storage have been proposed. In this paper, we propose a safe private key backup and recovery method using Shamir's Secrete Sharing (SSS) scheme and biometric information, and evaluate its safety. In this paper, we propose a safe private key backup and recovery method using Shamir's Secrete Sharing (SSS) scheme and biometric information, and evaluate its safety against robustness during message exchange, replay attack, man-in-the-middle attack and forgery and tampering attack.

Recovering RSA Private Key Bits from Erasures and Errors (삭제와 오류로부터 RSA 개인키를 복구하는 알고리즘)

  • Baek, Yoo-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.4
    • /
    • pp.951-959
    • /
    • 2017
  • Under the assumption that there is available some additional information other than plaintext-ciphertext pairs, the security of the RSA cryptosystem has been analyzed by the attack methods such as the side-channel attacks and the lattice-based attacks. Recently, based on the data retention property of the powered-off DRAMs, the so called cold boot attack was proposed in the literature, which is focusing on recovering the various cryptosystems' key from some auxiliary information. This paper is dealing with the problem of recovering the RSA private key with erasures and errors and proposes a new key recovery algorithm which is shown to have better performance than the previous one introduced by Kunihiro et al.

The Related-Key Attack on Grain-v1 (스트림 암호 Grain-v1에 대한 연관키 공격)

  • Lee, Yu-Seop;Jung, Ki-Tae;Sung, Jae-Chul;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.4
    • /
    • pp.45-52
    • /
    • 2008
  • The slide resynchronization attack on Grain-v1 was proposed in [5]. Given the keystream sequence, this attack can generate the 1-bit shifted keystream sequence generated by Grain-v1. In this paper, extending the attack proposed in [5], we propose the key recovery attack on Grain-v1 using the related-key. Using the weakness of the initialization procedure of Grain-v1, this attack recover the master key with $2^{25.02}$ Ⅳs and $2^{56}$ time complexity. This attack is the first known key recovery attack on Grain-v1.

Recoverable Password Based Key Exchange Protocol (복구 가능한 패스워드 기반 키 분배 프로토콜)

  • 손기욱;최영철;박상준;원동호
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.5
    • /
    • pp.97-104
    • /
    • 2001
  • In this paper, we propose Recoverable Password Based Key Exchange Protocol(RPKEP). RPKEP has user who has password, server which share the secret key information with user, and password recovery agency(PRA) which help to recover the user\`s password. Proposed protocol has some advantages that it is secure against off-line dictionary attack which is considered most important in password based key exchange protocol and suer\`s security is preserved even though user\`s secret information stored in the server is disclosed. By applying Chaum\`s blind signature scheme in the process of password recovery, even the PRA can\`t obtain any information about user\`s password.

Key Recovery Attacks on Fantomas and Robin Using Related-Key Differentials (연관키 차분 특성을 이용한 Fantomas와 Robin의 키 복구 공격)

  • Kim, Hangi;Kim, Jongsung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.4
    • /
    • pp.803-807
    • /
    • 2018
  • The Fantomas and the Robin are the block ciphers included in the LS-designs, the family of block ciphers. They are designed to efficiently apply the masking technique, which is a side-channel analysis countermeasure technique, using L-boxes and S-boxes capable of bit slice implementation. In this paper, we show that the key recovery attacks of Fantomas and Robin through the related-key differential analysis are possible with $2^{56}$ and $2^{72}$ time complexity, $2^{56}$ and $2^{69}$ chosen plaintext respectively.

Key Recovery Algorithm for Randomly-Decayed AES Key Bits (랜덤하게 변형된 AES 키 비트열에 대한 키 복구 알고리즘)

  • Baek, Yoo-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.2
    • /
    • pp.327-334
    • /
    • 2016
  • Contrary to the common belief, DRAM which is used for the main memory of various computing devices retains its content even though it is powered-off. Especially, the data-retaining time can increase if DRAM is cooled down. The Cold Boot Attack, a kind of side-channel attacks, tries to recover the sensitive information such as the cryptographic key from the powered-off DRAM. This paper proposes a new algorithm which recovers the AES key under the symmetric-decay cold-boot-attack model. In particular, the proposed algorithm uses the strategy of reducing the size of the candidate key space by testing the randomness of the extracted AES key bit stream.

On Recovering Erased RSA Private Key Bits

  • Baek, Yoo-Jin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.11-25
    • /
    • 2018
  • While being believed that decrypting any RSA ciphertext is as hard as factorizing the RSA modulus, it was also shown that, if additional information is available, breaking the RSA cryptosystem may be much easier than factoring. For example, Coppersmith showed that, given the 1/2 fraction of the least or the most significant bits of one of two RSA primes, one can factorize the RSA modulus very efficiently, using the lattice-based technique. More recently, introducing the so called cold boot attack, Halderman et al. showed that one can recover cryptographic keys from a decayed DRAM image. And, following up this result, Heninger and Shacham presented a polynomial-time attack which, given 0.27-fraction of the RSA private key of the form (p, q, d, $d_p$, $d_q$), can recover the whole key, provided that the given bits are uniformly distributed. And, based on the work of Heninger and Shacham, this paper presents a different approach for recovering RSA private key bits from decayed key information, under the assumption that some random portion of the private key bits is known. More precisely, we present the algorithm of recovering RSA private key bits from erased key material and elaborate the formula of describing the number of partially-recovered RSA private key candidates in terms of the given erasure rate. Then, the result is justified by some extensive experiments.

Improved Key-Recovery Attacks on HMAC/NMAC-MD4 (HMAC/NMAC-MD4에 대한 향상된 키 복구 공격)

  • Kang, Jin-Keon;Lee, Je-Sang;Sung, Jae-Chul;Hong, Seok-Hie;Ryu, Heui-Su
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.2
    • /
    • pp.63-74
    • /
    • 2009
  • In 2005, Wang et al. discovered devastating collision attacks on the main hash functions from the MD4 family. After the discovery of Wang, many analysis results on the security of existing hash-based cryptographic schemes are presented. At CRYPTO'07, Fouque, Leurent and Nguyen presented full key-recovery attacks on HMAC/NMAC-MD4 and NMAC-MD5[4]. Such attacks are based on collision attacks on the underlying hash function, and the most expensive stage is the recovery of the outer key. At EUROCRYPT'08, Wang, Ohta and Kunihiro presented improved outer key recovery attack on HMAC/NMAC-MD4, by using a new near collision path with a high probability[2]. This improves the complexity of the full key-recovery attack on HMAC/NMAC-MD4 which proposed by Fouque, Leurent and Nguyen at CRYPTO'07: The MAC queries decreases from $2^{88}$ to $2^{72}$, and the number of MD4 computations decreases from $2^{95}$ to $2^{77}$. In this paper, we propose improved outer key-recovery attack on HMAC/NMAC-MD4 with $2^{77.1246}$ MAC queries and $2^{37}$ MD4 computations, by using divide and conquer paradigm.