• 제목/요약/키워드: key frame extraction

검색결과 65건 처리시간 0.028초

동적 분할 기법을 이용한 효율적인 대표키 프레임 추출 (Efficient Representative-Key Frame Extraction Using Dynamic Segmentation Method)

  • 김영희;이순희;최운종;박장춘
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.515-517
    • /
    • 1999
  • 본 논문에서는 내용 기반 검색을 위한 방법의 핵심 기술중의 하나인 효율적인 대표키 프레임 추출을 위해 동적인 분할 기법을 제안하고, 다양한 장르의 비디오 데이터에 대하여 그 성능을 평가해 본다. 제안된 대표키 프레임 추출법은 기존의 균등 분할 방법에서 필요 이상의 분할이나 적은 분할로 인하여 중복 추출되거나 추출 대상에서 제외되었던 대표키를 효율적으로 검출할 수 있는 방법으로서 이는 분할 기준을 영상의 각 장르별 특징에 맞도록 동적으로 적용함으로써 획일적인 값을 적용한 기존의 연구와는 달리 차별을 가진다. 제안된 알고리즘으로 대표키 프레임을 추출하기 위하여 뉴스, 영화, 뮤직 드라마, 광고와 같은 다양한 장르별로 실험한 결과, 제안된 대표키 프레임 검출 방법이 효율적임을 확인할 수 있었다.

  • PDF

비디오 브라우징 서비스 (Video Browsing Service)

  • 신성윤;신광성;이현창;진찬용;이양원
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 춘계학술대회
    • /
    • pp.139-140
    • /
    • 2012
  • This paper proposes a Video Browsing Service that provides both the video content retrieval and the video browsing by the real-time user interface on Web. For the scene segmentation and key frame extraction of video sequence, we proposes an efficient scene change detection method that combine the RGB color histogram with the ${\chi}2$ histogram.

  • PDF

비디오 샷 경계면 분할기법 비교를 통한 대표 프레임의 추출 (Key frame Extraction Using Comparison of Video Shot Detection Techniques)

  • 고병철;변혜란
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.512-514
    • /
    • 1998
  • 샷 경계면 분할 기법은 효과적인 비디오 검색 시스템을 구축하기 위한 기본적인 기술이다. 따라서 효과적인 비디오 분석을 위해서는 신뢰할만한 샷 경계면 검출 기술이 필요하다. 하지만 비디오에서는 일반적인 프레임 뿐만 아니라 디졸브, 페이드와 같은 다양한 형태의 특수효과 등이 포함되어 있어 포괄적인 기술 개발이 어렵다. 본 논문에서는 지금까지 알려진 몇 가지 기법들의 성능을 비교하고 이를 개선시켜 몇 개의 새로운 알고리즘을 제안하고 있다. 샷 경계면 분할 작업이 끝난 뒤에는 비디오 클러스터링을 하기 위한 대표프레임 추출 작업이 필요하다. 대표 프레임은 단순하게 각 샷의 첫 번째 혹은 마지막 프레임을 추출할 수도 있지만, 이 경우 각 샷의 동적인 특성들을 제대로 표현할 수 없으므로, 본 논문에서는 샷의 변화량을 측정하여 대표 프레임의 수를 결정하는 방법을 사용하였다.

  • PDF

다중 특징을 포함한 키 프레임 추출에 의한 장면 전환 검출 오류 자동 수정 기법 (An automatic fault correction technique in the scene change detection by the key frame extraction includes multiple features)

  • 윤주현;염성주;김우생
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 춘계학술발표논문집 (상)
    • /
    • pp.187-190
    • /
    • 2002
  • 본 논문은 다중 특징을 포함한 대표 키 프레임을 추출을 통해 장면 전환 검출 시 발생할 수 있는 검출 오류를 자동으로 인식하고 수정함으로써 빠르고 신뢰성 있는 장면 분할을 수행하는 새로운 기법을 제안한다. 이를 위해 개선된 고속 장면 전환 검출 기법에 의해 샷을 분할 하고 분할 된 샷으로부터 대표 키 프레임과 그것에 포함된 후보 키 프레임들의 다중 정보를 포함시킴으로써 샷의 전반에 대한 정보를 보다 잘 표현할 수 있도록 한다. 그리고 다중정보를 포함한 대표 키 프레임의 비교를 통해 샷 검출 오류를 자동으로 인식하여 적절히 수정할 수 있는 기법을 제안하며 실세계 동영상 데이터를 사용한 실험을 통해서 제안하는 기법에 의해 효율적으로 샷이 분할 될 수 있음을 보인다.

  • PDF

키 프레임 추출을 통한 영상 정합 기법 (Image matching methods through key frame extraction)

  • 김종호;유지상
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 추계학술대회
    • /
    • pp.110-113
    • /
    • 2016
  • 본 논문에서는 카메라로 촬영한 동영상에서 키 프레임을 추출하고 특징점을 기반으로 영상을 정합하는 파노라마 영상 생성 기법을 제안한다. 제안한 기법에서는 다양한 동영상의 히스토그램, 에지 등의 정보를 이용해 강인한 키 프레임을 추출하고 추출된 다수의 키 프레임 영상에 실린더 투영 방법과 FAST(Feature from Accelerated Segment Test) 기법을 적용하여 자연스러운 정합 영상을 획득할 수 있다. 정합된 특징점의 오차율을 최소화하기 위해 RANSAC(Random Sample Consensus)을 사용하고 여러 장의 다른 시점 영상을 정합할 때 생길 수 있는 경계선을 제거하고 보정하기 위해 선형가중치 함수도 사용한다. 실험을 통해 제안하는 기법으로 자연스러운 파노라마 영상을 생성할 수 있었다.

  • PDF

뉴스 비디오 브라우저 (News Video Browser)

  • 신성윤;강오형;김형진;장대현
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.336-337
    • /
    • 2021
  • 본 논문에서는 웹상에서 실시간 사용자 인터페이스를 통해 비디오 컨텐츠 검색과 비디오 브라우징을 모두 제공하는 비디오 브라우징 서비스를 제안한다. 영상 시퀀스의 장면 분할 및 키 프레임 추출을 위해 RGB 컬러 히스토그램과 𝛘2 히스토그램을 결합한 효율적인 장면 변경 감지 방법을 제안한다.

  • PDF

비디오자료의 의미추출을 위한 영상초록의 효용성에 관한 실험적 연구 (An Experimental Study on the Effectiveness of Storyboard Surrogates in the Meanings Extraction of Digital Videos)

  • 김현희
    • 정보관리학회지
    • /
    • 제24권4호
    • /
    • pp.53-72
    • /
    • 2007
  • 본 연구에서는 12개의 표본 비디오 집단과 14명의 피조사자들을 이용하여 영상 초록 및 전체 클립 보기를 통한 색인어 및 요약문 추출의 정확도를 측정해 보았다. 측정결과 첫째, 비디오 유형에 따라 정확도가 차이가 있는 것으로 나타났으며 이는 이미지에 주로 의존하여 정보를 표출하는 비디오의 경우 텍스트 초록만으로 의미 파악을 하기에는 한계가 있으며 텍스트 초록이 영상 초록과 함께 사용되었을 때 시너지 효과를 낼 수 있음을 보여주고 있다. 둘째, 영상초록의 색인어 및 요약문 정확도가 전체 클립의 정확도 보다 떨어지지만 절반치에 근접한 것으로 나타나 영상 초록이 비디오 의미 추출에 효율적으로 활용될 수 있음을 확인하였다. 또한 영상 초록의 색인어 정확도(0.45)가 요약문 정확도(0.40) 보다더 높게 나타나 영상초록을 통해서 색인어 추출 작업을 더 효율적으로 할 수 있음을 확인할 수 있었다. 이러한 실험결과에 기초하여 영상 초록이 색인어 또는 요약문 추출 작업에 활용될 수 있을 뿐만 아니라, 디지털도서관 환경에서 텍스트 초록과 같은 다른 메타데이터 요소들과 함께 사용된다면 이용자의 적합성 판정을 좀 더 용이하게 할 것이며, 더 나아가 영상 질의의 매칭 자료로도 이용될 수 있음을 제안하였다. 끝으로 영상 초록의 품질을 높이기 위한 키프레임 추출 알고리즘 및 키프레임 배열 모형 설계 등 후속 연구에 대해서 제언하였다.

해마신경망을 이용한 관심 객체 기반의 효율적인 멀티미디어 검색 시스템의 개발 (The Development of Efficient Multimedia Retrieval System of the Object-Based using the Hippocampal Neural Network)

  • 정석훈;강대성
    • 대한전자공학회논문지SP
    • /
    • 제43권2호
    • /
    • pp.57-64
    • /
    • 2006
  • 본 논문에서는 해마신경망(HCNN:HippoCampal Neural Network)을 이용하여 사용자 친화적인 객체 기반 멀티미디어 검색시스템을 제안한다. 내용 기반 검색(Content-based Retrieval)에 관한 대부분의 기존의 질의 방법은 입력 영상에 의한 질의 또는 컬러(color), 형태(shape), 질감(texture)등과 같은 low-level의 특징을 사용한다. 본 논문에서 제안하는 방법은 MPEG 기반의 압축 비디오 스트림으로부터 장면 전환 검출을 수행하여 샷을 검출한다. 이 샷 프레임에서 컬러 객체의 자동 추출을 위하여 similar colorization과 ACE(Adaptive Circular filter and Edge) 알고리즘을 사용한다. 그리고 이렇게 추출된 특징을 해마 신경망을 통하여 학습한 후 멀티미디어 검색 시스템을 구성한다. 제안하는 해마 신경망은 호감도 조정에 의해서 입력되는 영상패턴의 특징들을 흥분학습과 억제학습을 이용하여 불필요한 특징은 억제시키고 중요한 특징은 흥분학습을 통해 장기기억 시켜서 적응성 있는 실시간 검색 시스템을 구현한다.

휘도투시모델을 적용한 효율적인 비디오 검색기법 (Efficient Video Retrieval Scheme with Luminance Projection Model)

  • 김상현
    • 한국산학기술학회논문지
    • /
    • 제16권12호
    • /
    • pp.8649-8653
    • /
    • 2015
  • 대용량 비디오 데이터베이스들을 효율적으로 관리하기 위해 많은 비디오 색인 및 검색 알고리즘들이 제안되고 있다. 비디오 콘텐츠 관리 시스템에서 비디오 유사도 측정방법은 가장 중요한 기술적 요소 중 하나이다. 본 논문에서는 비디오 유사도를 효율적으로 측정하기 위해 휘도특성 모델을 제안한다. 비디오 색인에 관한 대부분의 알고리즘들이 공통적으로 히스토그램, 윤곽선, 움직임 특성을 사용한 반면 본 논문에서 제안한 알고리즘은 휘도투시를 사용한 효율적인 유사도 측정법을 적용하였다. 비디오 시퀀스의 효율적인 색인과 계산량 감소를 위해 누적된 유사도에 의해 추출된 키프레임 들을 이용한 비디오 유사도를 계산하고 수정된 하우스도르프 거리를 사용하여 키프레임 묶음들을 비교하였다. 실험결과 제안한 휘도투시 모델이 적은 계산량으로 기존의 히스토그램 비교법을 사용한 알고리즘에 비해 현저히 향상된 정확도 및 성능을 보였다.

표정 HMM과 사후 확률을 이용한 얼굴 표정 인식 프레임워크 (A Recognition Framework for Facial Expression by Expression HMM and Posterior Probability)

  • 김진옥
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제11권3호
    • /
    • pp.284-291
    • /
    • 2005
  • 본 연구에서는 학습한 표정 패턴을 기반으로 비디오에서 사람의 얼굴을 검출하고 표정을 분석하여 분류하는 프레임워크를 제안한다. 제안 프레임워크는 얼굴 표정을 인식하는데 있어 공간적 정보 외시간에 따라 변하는 표정의 패턴을 표현하기 위해 표정 특성을 공간적으로 분석한 PCA와 시공간적으로 분석한 Hidden Markov Model(HMM) 기반의 표정 HMM을 이용한다. 표정의 공간적 특징 추출은 시간적 분석 과정과 밀접하게 연관되어 있기 때문에 다양하게 변화하는 표정을 검출하여 추적하고 분류하는데 HMM의 시공간적 접근 방식을 적용하면 효과적이기 때문이다. 제안 인식 프레임워크는 현재의 시각적 관측치와 이전 시각적 결과간의 사후 확률 방법에 의해 완성된다. 결과적으로 제안 프레임워크는 대표적인 6개 표정뿐만 아니라 표정의 정도가 약한 프레임에 대해서도 정확하고 강건한 표정 인식 결과를 보인다. 제안 프레임 워크를 이용하면 표정 인식, HCI, 키프레임 추출과 같은 응용 분야 구현에 효과적이다