• Title/Summary/Keyword: kerosene. diesel

Search Result 67, Processing Time 0.033 seconds

In-situ Bioremediation of Total Petroleum Hydrocarbons-Contaminated Soil by Pseudomonas Species (토양 내 TPH(Total Petroleum Hydrocarbons)의 생물학적 분해 연구)

  • Kim, Jee-Young;Lee, Sang-Seob
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.2
    • /
    • pp.161-167
    • /
    • 2011
  • We previously showed that five strains belonging to Pseudomonas could remove TPH (Total Petroleum Hydrocarbons) efficiently when they are applied to TPH-contaminated soil. We optimized the bioremediation condition using different hydrocarbons and nutrients conditions to improve the efficiency. We setup lab-scale column bioreactor to monitor TPH and diesel removal efficiency. When we applied five Pseudomonas sp. mixtures to 25,000 $mg{\cdot}kg^{-1}$ TPH-contaminated soil (diesel 10,000 $mg{\cdot}kg^{-1}$, kerosene 10,000 $mg{\cdot}kg^{-1}$, gasoline 5,000 $mg{\cdot}kg^{-1}$) with the optimum condition, 76.3% of TPH removal efficiency was shown for 25 days. Meanwhile, in the application of five Pseudomonas sp. mixtures to 20,000 $mg{\cdot}kg^{-1}$ diesel-contaminated soil with the optimum condition, 99.2% of diesel removal efficiency was shown for 40 days. In the application to lab-scale bioreactor with five high efficiency bacteria, 88.5% of TPH removal efficiency was shown for 45 days. Based on the results from this study, we confirmed that this mixed Pseudomonas sp. consortium might improve the bioremediation of TPH in contaminated soil, the efficacy can be controlled by improving the nutrients. We also confirmed that the nutrients and oxygen for biodegradation of TPH could contribute on the management and control of applications of these strains for the study of bioremediation of TPH-contaminated soil.

Biofilter를 이용한 diesel VOCs의 생물학적 제거

  • 이은영;최우진;최진규;김무훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.347-350
    • /
    • 2002
  • The petrochemical products can cause soil and groundwater contamination during their transportation and the use of the products, and while being contained in underground storage tanks(USTs) throughout the leakage. To treat the contaminated soil, the bioventing method is suitable for the remediation of semi-volatile compounds, such as diesel and kerosene. Biofiltration is one of possible method to treat the off-gas produced in the process of the bioventing. This study is related to the usage, effectiveness of treatment, and feasibility of two types of biofilter system made of ceramic-compost and polymer respectively to treat diesel VOCs at constant retention time of 20 sec. Compost biofilter showed the average removal efficiency of 73 % when the inlet concentration increased to 20 ppmv. Increased the inlet concentration decreased the microbial activities as well as the removal efficiency. On the contrary, the removal efficiency of the polyurethane biofilter was maintained at 88 % at the inlet concentration of 13 ppmv during ten days and was obtained to 80 % at the inlet concentration of 30 ppmv in spite of the drop of the efficiency in the sudden increase of the inlet concentration. At the beginning of the experiment it showed low removal efficiency at low inlet concentration due to the low microbial activity, however, as experiments proceed the removal efficiency could be obtained more than 80% at high inlet concentration.

  • PDF

The developments of heavy hydrocarbon reformer for SOFC

  • Bae, Jung-Myeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.58.2-58.2
    • /
    • 2012
  • Heavy hydrocarbon reforming is a core technology for "Dirty energy smart". Heavy hydrocarbons are components of fossil fuels, biomass, coke oven gas and etc. Heavy hydrocarbon reforming converts the fuels into $H_2$-rich syngas. And then $H_2$-rich syngas is used for the production of electricity, synthetic fuels and petrochemicals. Energy can be used efficiently and obtained from various sources by using $H_2$-rich syngas from heavy hydrocarbon reforming. Especially, the key point of "Dirty energy smart" is using "dirty fuel" which is wasted in an inefficient way. New energy conversion laboratory of KAIST has been researched diesel reforming for solid oxide fuel cell (SOFC) as a part of "Dirty energy smart". Diesel is heavy hydrocarbon fuels which has higher carbon number than natural gas, kerosene and gasoline. Diesel reforming has difficulties due to the evaporation of fuels and coke formation. Nevertheless, diesel reforming technology is directly applied to "Dirty fuel" because diesel has the similar chemical properties with "Dirty fuel". On the other hand, SOFC has advantages on high efficiency and wasted heat recovery. Nippon oil Co. of Japan recently commercializes 700We class SOFC system using city gas. Considering the market situation, the development of diesel reformer has a great ripple effect. SOFC system can be applied to auxiliary power unit and distributed power generation. In addition, "Dirty energy smart" can be realized by applying diesel reforming technology to "Dirty fuel". As well as material developments, multidirectional approaches are required to reform heavy hydrocarbon fuels and use $H_2$-rich gas in SOFC. Gd doped ceria (CGO, $Ce_{1-x}Gd_xO_{2-y}$) has been researched for not only electrolyte materials but also catalysts supports. In addition, catalysts infiltrated electrode over porous $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3-{\delta}$ and catalyst deposition at three phase boundary are being investigated to improve the performance of SOFC. On the other hand, nozzle for diesel atomization and post-reforming for light-hydrocarbons removal are examples of solving material problems in multidirectional approaches. Likewise, multidirectional approaches are necessary to realize "Dirty energy smart" like reforming "Dirty fuel" for SOFC.

  • PDF

The Characteristics of Exhaust Gas Emissions with GTL Fuel (GTL연료의 배출가스 특성 연구)

  • Gwoak, Soon-Chul;Seo, Chung-Yul;Kang, Dae-Il;Park, Jung-Min;Yim, Yoon-Sung;Hwan, Chun-Sik;Eom, Myoung-Do;Kim, Jong-Choon;Lee, Young-Jae;Pyo, Young-Dug;Jung, Choong-Sub;Jang, Eun-Jung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.17-22
    • /
    • 2007
  • GTL(Gas-to-Liquids) fuel technology was converted from the natural gas, coal and biomass into the diesel or kerosene by Fisher-Tropsch synthesis. GTL fuel have very good merits on high cetane number, low density, free sulfur, lower aromatics contents and no poly-aromatic hydrocarbons as well as the autoignition characteristics. These physical properties make it valuable as a diesel fuel with lower emissions than the conventional diesel fuel. Furthermore, GTL fuel can be use not to the engine any modification. Therefore, to evaluate emissions of GTL fuel, the tested diesel vehicles were fueled on blends of GTL fuel/ultra low sulfur diesel fuel(ULSD). And then, we found out that GTL fuel reduced regulated emissions(CO, NOx, HC, PM) compare with conventional diesel fuel.

An experimental Investigation on Flame spreading over liquid fuel surface (액체 연료 표면에서의 화염확장기구에 관한 실험적 연구)

  • 김한석
    • Fire Science and Engineering
    • /
    • v.7 no.1
    • /
    • pp.5-10
    • /
    • 1993
  • Flame spreading over liquid fuel surface has been investigated using thermocouple and schlieren photograph. Without forced convection, it was clearly found that the flame spreading is mainly controlled by surface flow which is maybe generated by change of surface tension. Furthermore, the radiative heat transfer is dominant over a conductive heat transfer in kerosene. But the latter was found more influential than the former in diesel. Oscillation of flame spreading was found. It maybe cause of surface flow.

  • PDF

A Survey on the Break-down and Repair of the Power Tillers in Korea (동력경운기(動力耕耘機) 이용실태(利用實態) 조사분석(調査分析)(II) -고장(故障) 및 수리(修理)에 관(關)하여-)

  • Hong, Jong Ho;Lee, Chai Shik
    • Journal of Biosystems Engineering
    • /
    • v.6 no.1
    • /
    • pp.28-38
    • /
    • 1981
  • A survey has been conducted to investigate the presents of breaks down and repair of power tiller for efficient use. Eight provinces were covered for this study. The results are summarized as follows. A. Frequency of breaks down. 1) Power tiller was breaken down 9.05 times a year and it represents a break down every 39.1 hours of use. High frequency of breaks down was found from the fuel and ignition system. For only these system, the number of breaks down were 2.02 and it represents 23.3% among total breaks down. It was followed by attachments, cylinder system, and traction device. 2) For the power tiller which was more than six years old, breaks down accured 37.7 hours of use and every 38.6 hours for the power tiller which was purchased in less than 2 years. 3) For the kerosene engine power tiller, breaks down occured every 36.8 hours of use, which is a higher value compared with diesel engine power tiller which break down every 42.8 hours of use. The 8HP kerosene engine power tiller showed higher frequency of break down compared with any other horse power tiller. 4) In October, the lowest frequency of break down was found with the value of once for every 51.5 hours of use, and it was followed by the frequency of break down in June. The more hours of use, the less breaks down was found. E. Repair place 1) 45.3% among total breaks down of power tiller was repaired by the owner, and 54.7% was repaired at repair shop. More power tiller were repaired at repair shop than by owner of power tiller. 2) The older the power tiller is, the higher percentage of repairing at the repair shop was found compared with the repairing by the owner. 3) Higher percentage of repairing by the owner was found for the diesel engine power tiller compared with the kerosene engine power tiller. It was 10 HP power tiller for the kerosene power tiller and 8 HP for the diesel engine power tiller. 4) 66.7% among total breaks down of steering device was repaired by the owner. It was the highest value compared with the percentage of repairing of any other parts of power tiller. The lowest percentage of repairing by owner was found for the attachments to the power tiller with the value of 26.5%. C. Cause of break down 1) Among the total breaks down of power tiller, 57.2% is caused by the old parts of power tiller with the value of 5.18 times break down a year and 34.7% was caused by the poor maintenance and over loading. 2) For the power tiller which was purchased in less than two years, more breaks down were caused by poor maintenance in comparison to the old parts of power tiller. 3) For the both 8-10 HP kerosene and diesel engine power tiller, the aspects of breaks down was almost the same. But for the 5 HP power tiller, more breaks down was caused by over loading in comparison to the old parts of power tiller. 4) For the cylinder system and traction device, most of the breaks down was caused by the old parts and for the fuel and ignition system, breaks down was caused mainly by the poor maintenance. D. Repair Cost 1) For each power tiller, repair cost was 34,509 won a year and it was 97 won for one hoar operation. 2) Repair cost of kerosene engine power tiller was 40,697 won a year, and it use 28,320 won for a diesel engine power tiller. 3) Average repair cost for one hour operation of kerosene engine power tiller was 103 won, and 86 won for a diesel engine power tiller. No differences were found between the horse power of engines. 4) Annual repair cost of cylinder system was 13,036 won which is the highest one compared with the repair cost of any other parts 362 won a year was required to repair the steering device, and it was the least among repair cost of parts. 5) Average cost for repairing the power tiller one time was 3,183 won. It was 10,598 won for a cylinder system and 1,006 won for a steering device of power tiller. E. Time requirement for repairing by owner. 1) Average time requirements for repairing the break down of a power tiller by owner himself was 8.36 hours, power tiller could not be used for operation for 93.58 hours a year due to the break down. 2) 21.3 hours were required for repairing by owner himself the break down of a power tiller which was more than 6 years old. This value is the highest one compared with the repairing time of power tiller which were purchased in different years. Due to the break down of the power tiller, it could not be used for operation annually 127.13 hours. 3) 10.66 hours were required for repairing by the owner himself a break down of a diesel engine power tiller and 6.48 hours for kerosene engine power tiller could not be used annually 99.14 hours for operation due to the break down and it was 88.67 hour for the diesel engine power tiller. 4) For both diesel and kerosene engine power tiller 8 HP power tiller required the least time for repairing by owner himself a break down compared with any other horse power tiller. It was 2.78 hours for kerosene engine power tiller and 8.25 hours fur diesel engine power tiller. 5) For the cylinder system of power tiller 32.02 hours were required for repairing a break down by the owner himself. Power tiller could not be used 39.30 hours a year due to the break down of the cylinder system.

  • PDF

A Study of Analytical Methods for Oils in Contaminated Soil (오염 토양중의 유류 분석법)

  • 표희수;박송자;박성수;홍지은;이강진
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.2
    • /
    • pp.3-12
    • /
    • 1998
  • To analyze of oils in contaminated soils, it is necessary to classify of oils accurately and it has to be selected suitable extraction method and instrumental analysis method in according to the character of sample. In this study, oils are classified into three groups-gasoline, diesel and kerosene-we consider extraction methods and quantitative analysis method of these oils using GC/MS. As the analysis example of real sample, we analyze some gasolines and diesels of some oil refining company and calculate BTEX in gasoline and saturated n-hydrocarbons in diesel. And also, we study the representative quantitative method of each kind of oils.

  • PDF

Activity test of post-reforming catalyst for removing the ethylene in diesel ATR reformate (디젤 자열개질 가스 내 포함된 $C_2H_4$ 제거를 위한 후개질기 촉매 활성 실험)

  • Yoon, Sang-Ho;Bae, Joong-Myeon;Lee, Sang-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.218-221
    • /
    • 2009
  • Solid oxide fuel cells (SOFCs), as high-temperature fuel cells, have various advantages. In some merits of SOFCs, high temperature operation can lead to the capability for internal reforming, providing fuel flexibility. SOFCs can directly use CH4 and CO as fuels with sufficient steam feeds. However, hydrocarbons heavier than CH4, such as ethylene, ethane, and propane, induce carbon deposition on the Ni-based anodes of SOFCs. In the case of the ethylene steam reforming reaction on a Ni-based catalyst, the rate of carbon deposition is faster than among other hydrocarbons, even aromatics. In the reformates of heavy hydrocarbons (diesel, gasoline, kerosene and JP-8), the concentration of ethylene is usually higher than other low hydrocarbons such as methane, propane and butane. It is importatnt that ethylene in the reformate is removed for stlable operation of SOFCs. A new methodology, termed post-reforming was introduced for removing low hydrocarbons from the reformate gas stream. In this work, activity tests of some post-reforming catalysts, such as CGO-Ru, CGO-Ni, and CGO-Pt, are investigated. CGO-Pt catalyst is not good for removing ethylene due to low conversion of ethylene and low selectivity of ethylene dehydrogenation. The other hand, CGO-Ru and CGO-Ni catalysts show good ethylene conversion, and CGO-Ni catalyst shows the best reaction selectivity of ethylene dehydrogenation.

  • PDF

The Source Identification of Spilled Oil by Pristane/Phytane Ratio

  • Bae, Il-Sang;Kweon Jung;Oh, Hyun-Jung;Shin, Ho-Sang;Lee, Jae-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.64-67
    • /
    • 2003
  • In order to identify the origin and nature of the spilled oil in the potential source, we analyzed the concentrations of specific fuel constituents in fuel standard and environmental samples. The ratios of pristane/phytane are virtually unaltered because these compounds have the same bolatility in environmental samples. These were useful to identify the source of the fuel oil and to assess the effect of microbial degradation and weathering of the fuel oil. We analyzed the ratios of pristane/phytane in neat white kerosene, boiler kerosene, JP-8 and diesel products from L and S gas station. The ratios of pristane/phytane in L-white kerosene and JP-8 was 3.10 $\pm$0.03 and 1.77 $\pm$ 0.01, respectively. Otherwise, the ratios of pristane/phytane in water phase after distribution of fuel oil and water was 2.97 $\pm$0.02 in case of white kerosene and 1.65 $\pm$ 0.02 in case of JP-8. It is apparent from the results that the ratios of pristane/phytane were as product-specific, especially between kerosene and JP-8, and therefore, can also be used for fuel type identification in free products and groundwater samples which were collected in monitoring wells.

Analysis of Environmental Process for Commercial Rubbers using Thermal Degradation (열분해를 이용한 범용고무의 환경친화적 처리공정 해석)

  • Kim, Won-Il;Lee, Seung-Bum;Hong, In-Kwon
    • Elastomers and Composites
    • /
    • v.35 no.4
    • /
    • pp.272-280
    • /
    • 2000
  • The experimental kinetics was analyzed for commercial rubbers such as NR, IR, BR, SBR 1500, and SBR 1700. Kinetic analysis for the commercial rubbers was performed using a thermogravimetric method, which the activation energies of NR obtained by Kissinger, Friedman, ana Ozawa's method were 195.0, 198.3, and 186.3 kJ/mol, respectively. whereas that of SBR 1500 were 246.4, 247.5, and 254.8 kJ/mol, respectively. It was shown that the yield of pyrolytic oil was generally increased with increasing the final temperature. Considering the effect of heating rate. it was found that the yield of pyrolytic oil was not consistent for each sample. The number average molecular weight of pyrolitic oil of SBR 1500 was in the range of 740-2486. The calorific value of SBR 1500 was 39-40 kJ/g, and it might be a considerable energy potential although it was lower than the conventional fuel such as kerosene, diesel, light fuel, and heavy fuel.

  • PDF