• 제목/요약/키워드: kernelized

검색결과 16건 처리시간 0.023초

Deep Learning Object Detection to Clearly Differentiate Between Pedestrians and Motorcycles in Tunnel Environment Using YOLOv3 and Kernelized Correlation Filters

  • Mun, Sungchul;Nguyen, Manh Dung;Kweon, Seokkyu;Bae, Young Hoon
    • 방송공학회논문지
    • /
    • 제24권7호
    • /
    • pp.1266-1275
    • /
    • 2019
  • With increasing criminal rates and number of CCTVs, much attention has been paid to intelligent surveillance system on the horizon. Object detection and tracking algorithms have been developed to reduce false alarms and accurately help security agents immediately response to undesirable changes in video clips such as crimes and accidents. Many studies have proposed a variety of algorithms to improve accuracy of detecting and tracking objects outside tunnels. The proposed methods might not work well in a tunnel because of low illuminance significantly susceptible to tail and warning lights of driving vehicles. The detection performance has rarely been tested against the tunnel environment. This study investigated a feasibility of object detection and tracking in an actual tunnel environment by utilizing YOLOv3 and Kernelized Correlation Filter. We tested 40 actual video clips to differentiate pedestrians and motorcycles to evaluate the performance of our algorithm. The experimental results showed significant difference in detection between pedestrians and motorcycles without false positive rates. Our findings are expected to provide a stepping stone of developing efficient detection algorithms suitable for tunnel environment and encouraging other researchers to glean reliable tracking data for smarter and safer City.

다중 스케일 커널화 상관 필터를 이용한 견실한 객체 추적 (Robust Object Tracking based on Kernelized Correlation Filter with multiple scale scheme)

  • 윤준한;김진헌
    • 전기전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.810-815
    • /
    • 2018
  • 커널 상관 필터 알고리듬은 객체 추적에 대해 정확도에서 의미 있는 성과를 거두었다. 그러나 고정된 크기의 템플릿을 사용하기 때문에 추적 대상의 스케일 변화에 대처할 수 없었다. 본 논문에서는 최근접 보간법과 표준 가우시안 정규화를 이용한 다중 스케일에서의 상관 필터링 응답 값을 이용하여 프레임별로 가장 적합한 스케일을 찾아 객체를 추적하는 방식을 제안한다. 다음 프레임의 스케일 값들은 이전 프레임의 최적 스케일 값을 이용해 갱신하고 다시 해당 프레임에서의 최적의 스케일 값을 찾는다. 정확도 비교를 위해 기존 커널 상관 필터 알고리듬에서 사용된 VOT2014 데이터를 사용하여 제안된 방법의 유효성을 검증한다.

커널 함수를 도입한 새로운 추천 시스템 (A New Kernelized Approach to Recommender System)

  • 이제헌;황재필;김은태
    • 한국지능시스템학회논문지
    • /
    • 제21권5호
    • /
    • pp.624-629
    • /
    • 2011
  • 본 논문에서는 커널 함수를 이용한 기법을 통한 추천 시스템을 제안한다. 제안된 추천 시스템은 기계 학습 기법을 이용하여 새로운 아이템에 대한 사용자의 선호도를 예측하고 예측된 결과를 바탕으로 사용자가 선호할만한 아이템들을 추천한다. 일반적으로 사용자의 평가 정보는 잡음이 포함되어 있고 일관성이 적으므로 잡음에 영향을 적게 받는 이원 분류기인 이중 마진 Lagrangian support vector machine (DMLSVM) 을 사용한다. 제안된 기법은 MovieLens 데이터베이스에 적용하였다. 또한 시뮬레이션을 통해 제안된 방법의 우수성을 확인하였다.

커널상관필터를 이용한 소형무인기 추적 (Small UAV tracking using Kernelized Correlation Filter)

  • 선선구;이의혁
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권1호
    • /
    • pp.27-33
    • /
    • 2020
  • 최근 영상 센서를 이용한 물체 탐지 및 추적 기술은 많은 응용분야에서 그 사용이 널리 확대되고 있다. 민수 산업 분야에서 로보틱스, 비디오 감시정찰 및 차량 네비게이션 분야와 같은 영역으로 널리 확대되고 있는 추세이다. 특히, 드론의 사용이 널리 확대되고 있는 현 상황에서 공항, 원자력 발전소 및 중요시설에서는 불법적으로 운용되고 있는 소형무인기를 탐지 및 추적하여 격추시키는 시스템 개발이 매우 중요하다. 최근 영상센서를 활용한 물체 추적 방법으로 이목을 끌고 있는 방법이 학습에 기반을 둔 KCF 방법이다. 그러나 이 방법은 추적 기간이 길어지면 추적 과정에서 표적의 드리프트가 발생하는 문제점이 있다. 비디오 감시정찰 분야에서 표적의 드리프트 문제를 줄이기 위해 우리는 KCF와 적응 임계치설정 및 칼만필터를 적용하여 표적 드리프트 문제를 줄일 수 있는 방법을 제안하였다. 실험을 통해서 실제 무인비행체가 운용되는 실제 환경에서 획득된 흑백 비디오 영상에 제안한 방법과 기존의 KCF 알고리즘을 비교하여 제안한 방법의 우수성을 입증하였다.

Constrained Sparse Concept Coding algorithm with application to image representation

  • Shu, Zhenqiu;Zhao, Chunxia;Huang, Pu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권9호
    • /
    • pp.3211-3230
    • /
    • 2014
  • Recently, sparse coding has achieved remarkable success in image representation tasks. In practice, the performance of clustering can be significantly improved if limited label information is incorporated into sparse coding. To this end, in this paper, a novel semi-supervised algorithm, called constrained sparse concept coding (CSCC), is proposed for image representation. CSCC considers limited label information into graph embedding as additional hard constraints, and hence obtains embedding results that are consistent with label information and manifold structure information of the original data. Therefore, CSCC can provide a sparse representation which explicitly utilizes the prior knowledge of the data to improve the discriminative power in clustering. Besides, a kernelized version of our proposed CSCC, namely kernel constrained sparse concept coding (KCSCC), is developed to deal with nonlinear data, which leads to more effective clustering performance. The experimental evaluations on the MNIST, PIE and Yale image sets show the effectiveness of our proposed algorithms.

MWIR 및 SWIR 센서를 이용한 커널상관필터기반의 표적추적 (Target Tracking based on Kernelized Correlation Filter Using MWIR and SWIR Sensors)

  • 선선구;이유리;서대교
    • 한국군사과학기술학회지
    • /
    • 제26권1호
    • /
    • pp.22-30
    • /
    • 2023
  • When tracking small UAVs and drone targets in cloud clutter environments, MWIR sensors are often unable to track targets continuously. To overcome this problem, the SWIR sensor is mounted on the same gimbal. Target tracking uses sensor information fusion or selectively applies information from each sensor. In this case, parallax correction using the target distance is often used. However, it is difficult to apply the existing method to small UAVs and drone targets because the laser rangefinder's beam divergence angle is small, making it difficult to measure the distance. We propose a tracking method which needs not parallax correction of sensors. In the method, images from MWIR and SWIR sensors are captured simultaneously and a tracking error for gimbal driving is chosen by effectiveness measure. In order to prove the method, tracking performance was demonstrated for UAVs and drone targets in the real sky background using MWIR and SWIR image sensors.

지능형 전방위 영상 분석 시스템 제안 및 구현 (Proposal and Implementation of Intelligent Omni-directional Video Analysis System)

  • 전소연;허준학;박구만
    • 방송공학회논문지
    • /
    • 제22권6호
    • /
    • pp.850-853
    • /
    • 2017
  • 본 논문에서는 초광각 카메라를 활용한 전방위 영상 및 객체 추적 결과 영상 표출을 통한 영상 분석 시스템을 제안한다. 구형 전방위 영상 생성을 위해 광각 영상 두 개에서 equirectangular 파노라마 영상으로의 projection 과정을 거쳤고, 구면 좌표계 변환식을 사용하여 구형 영상으로 표출하였다. 객체 추적은 원하는 객체를 초기에 선택하는 방식으로 수행되었으며, equirectangular 영상 내 왜곡으로 인한 객체 형태 변화에도 강인한 객체 추적이 이루어질 수 있도록 KCF(Kernelized Correlation Filter) 알고리즘을 사용하였다. 초기 다이얼로그에서는 파일 및 모드를 선택하고, 이후 새 다이얼로그에서 구형 영상 매핑 수행 결과 영상이 표출되도록 하였으며, 객체 추적 모드를 선택한 경우 새로운 창에서 원하는 영역을 드래그하여 ROI를 설정한 뒤, 이를 매 프레임마다 추적할 수 있도록 하였다.

해변에서의 사람 검출 알고리즘 (People Detection Algorithm in the Beach)

  • 최유정;김윤
    • 한국멀티미디어학회논문지
    • /
    • 제21권5호
    • /
    • pp.558-570
    • /
    • 2018
  • Recently, object detection is a critical function for any system that uses computer vision and is widely used in various fields such as video surveillance and self-driving cars. However, the conventional methods can not detect the objects clearly because of the dynamic background change in the beach. In this paper, we propose a new technique to detect humans correctly in the dynamic videos like shores. A new background modeling method that combines spatial GMM (Gaussian Mixture Model) and temporal GMM is proposed to make more correct background image. Also, the proposed method improve the accuracy of people detection by using SVM (Support Vector Machine) to classify people from the objects and KCF (Kernelized Correlation Filter) Tracker to track people continuously in the complicated environment. The experimental result shows that our method can work well for detection and tracking of objects in videos containing dynamic factors and situations.

동적인 배경에서의 사람 검출 알고리즘 (People Detection Algorithm in Dynamic Background)

  • 최유정;이동렬;김윤
    • 산업기술연구
    • /
    • 제38권1호
    • /
    • pp.41-52
    • /
    • 2018
  • Recently, object detection is a critical function for any system that uses computer vision and is widely used in various fields such as video surveillance and self-driving cars. However, the conventional methods can not detect the objects clearly because of the dynamic background change in the beach. In this paper, we propose a new technique to detect humans correctly in the dynamic videos like shores. A new background modeling method that combines spatial GMM (Gaussian Mixture Model) and temporal GMM is proposed to make more correct background image. Also, the proposed method improve the accuracy of people detection by using SVM (Support Vector Machine) to classify people from the objects and KCF (Kernelized Correlation Filter) Tracker to track people continuously in the complicated environment. The experimental result shows that our method can work well for detection and tracking of objects in videos containing dynamic factors and situations.

Signal Detection Based on a Decreasing Exponential Function in Alpha-Stable Distributed Noise

  • Luo, Jinjun;Wang, Shilian;Zhang, Eryang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권1호
    • /
    • pp.269-286
    • /
    • 2018
  • Signal detection in symmetric alpha-stable ($S{\alpha}S$) distributed noise is a challenging problem. This paper proposes a detector based on a decreasing exponential function (DEF). The DEF detector can effectively suppress the impulsive noise and achieve good performance in the presence of $S{\alpha}S$ noise. The analytical expressions of the detection and false alarm probabilities of the DEF detector are derived, and the parameter optimization for the detector is discussed. A performance analysis shows that the DEF detector has much lower computational complexity than the Gaussian kernelized energy detector (GKED), and it performs better than the latter in $S{\alpha}S$ noise with small characteristic exponent values. In addition, the DEF detector outperforms the fractional lower order moment (FLOM)-based detector in $S{\alpha}S$ noise for most characteristic exponent values with the same order of magnitude of computational complexity.