• 제목/요약/키워드: kernel quantile regression

검색결과 16건 처리시간 0.018초

Support Vector Quantile Regression with Weighted Quadratic Loss Function

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • 제17권2호
    • /
    • pp.183-191
    • /
    • 2010
  • Support vector quantile regression(SVQR) is capable of providing more complete description of the linear and nonlinear relationships among random variables. In this paper we propose an iterative reweighted least squares(IRWLS) procedure to solve the problem of SVQR with a weighted quadratic loss function. Furthermore, we introduce the generalized approximate cross validation function to select the hyperparameters which affect the performance of SVQR. Experimental results are then presented which illustrate the performance of the IRWLS procedure for SVQR.

국소 선형 복합 분위수 회귀에서의 평활계수 선택 (Selection of bandwidth for local linear composite quantile regression smoothing)

  • 전명식;강종경;방성완
    • 응용통계연구
    • /
    • 제30권5호
    • /
    • pp.733-745
    • /
    • 2017
  • 국소복합분위수 회귀모형을 활용한 비모수적 함수 추정방법이 높은 효율성과 더불어 활발히 연구되고 있다. 이러한 추정과정에 커널을 사용한 자료 평활방법이 대표적으로 사용되고 있으며, 그 성능은 커널보다는 평활계수의 선택 크게 의존한다. 한편, 회귀함수 추정방법의 성능을 평가하는 기준으로는 통상적으로 $L_2$-노름이 사용되어 평균제곱오차 또는 평균적분제곱오차를 최소화하는 평활계수의 선택에 대한 많은 연구가 진행되어 왔다. 본 논문에서는 국소선형 복합 분위수 회귀방법을 활용한 비모수 회귀모형 추정량의 성능을 결정하는 평활계수 선택의 최적성에 관해 연구하였다. 특히, 여러 장점을 가졌으나 수리적 어려움으로 연구가 미흡한 평균절대오차 및 평균적분절대오차를 최적의 기준으로 삼아 최적의 평활계수를 구하고 그 유일성에 관해 연구하였다. 나아가 기존의 평가기준인 평균제곱오차 및 평균적분제곱오차를 사용한 선택과의 관계를 파악하고 그 성능을 비교하였다. 이러한 과정에서 다양한 상황에서의 모의실험을 통해 제안한 방법의 특성을 규명하였다.

서포트벡터 회귀를 이용한 실시간 제품표면거칠기 예측 (Real-Time Prediction for Product Surface Roughness by Support Vector Regression)

  • 최수진;이동주
    • 산업경영시스템학회지
    • /
    • 제44권3호
    • /
    • pp.117-124
    • /
    • 2021
  • The development of IOT technology and artificial intelligence technology is promoting the smartization of manufacturing system. In this study, data extracted from acceleration sensor and current sensor were obtained through experiments in the cutting process of SKD11, which is widely used as a material for special mold steel, and the amount of tool wear and product surface roughness were measured. SVR (Support Vector Regression) is applied to predict the roughness of the product surface in real time using the obtained data. SVR, a machine learning technique, is widely used for linear and non-linear prediction using the concept of kernel. In particular, by applying GSVQR (Generalized Support Vector Quantile Regression), overestimation, underestimation, and neutral estimation of product surface roughness are performed and compared. Furthermore, surface roughness is predicted using the linear kernel and the RBF kernel. In terms of accuracy, the results of the RBF kernel are better than those of the linear kernel. Since it is difficult to predict the amount of tool wear in real time, the product surface roughness is predicted with acceleration and current data excluding the amount of tool wear. In terms of accuracy, the results of excluding the amount of tool wear were not significantly different from those including the amount of tool wear.

Association of heavy metal complex exposure and neurobehavioral function of children

  • Minkeun Kim;Chulyong Park;Joon Sakong;Shinhee Ye;So young Son;Kiook Baek
    • Annals of Occupational and Environmental Medicine
    • /
    • 제35권
    • /
    • pp.23.1-23.14
    • /
    • 2023
  • Background: Exposure to heavy metals is a public health concern worldwide. Previous studies on the association between heavy metal exposure and neurobehavioral functions in children have focused on single exposures and clinical manifestations. However, the present study evaluated the effects of heavy metal complex exposure on subclinical neurobehavioral function using a Korean Computerized Neurobehavior Test (KCNT). Methods: Urinary mercury, lead, cadmium analyses as well as symbol digit substitution (SDS) and choice reaction time (CRT) tests of the KCNT were conducted in children aged between 10 and 12 years. Reaction time and urinary heavy metal levels were analyzed using partial correlation, linear regression, Bayesian kernel machine regression (BKMR), the weighted quantile sum (WQS) regression and quantile G-computation analysis. Results: Participants of 203 SDS tests and 198 CRT tests were analyzed, excluding poor cooperation and inappropriate urine sample. Partial correlation analysis revealed no association between neurobehavioral function and exposure to individual heavy metals. The result of multiple linear regression shows significant positive association between urinary lead, mercury, and CRT. BMKR, WQS regression and quantile G-computation analysis showed a statistically significant positive association between complex urinary heavy metal concentrations, especially lead and mercury, and reaction time. Conclusions: Assuming complex exposures, urinary heavy metal concentrations showed a statistically significant positive association with CRT. These results suggest that heavy metal complex exposure during childhood should be evaluated and managed strictly.

조건부 분위수의 중도절단을 고려한 비모수적 추정 (Nonparametric estimation of conditional quantile with censored data)

  • 김은영;최혜미
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권2호
    • /
    • pp.211-222
    • /
    • 2013
  • 중도절단된 자료가 있을 경우 조건부 분위수함수를 비모수적으로 추정하는 문제에 대하여 다루고 있다. 역함수에 근거한 방법인 Yu와 Jones (1998)에 의해 제안된 중복커널기법 추정량과 Lee 등(2006)의 국소로지스틱기법 추정량을 중도절단된 자료가 있는 경우로 수정하여 새롭게 제안하고, 이들을 기존의 Koenker와 Bassett (1978)의 점검함수에 근거한 커널평활 추정량들과 모의실험을 통해 비교해 보았다. 모의실험을 통하여 역함수에 근거한 추정량들은 조건부 분포가 대칭인 모형에서, 점검함수기법 추정량들은 한쪽으로 치우친 분포인 경우에 조건부 분위수를 대체로 더 잘 추정하고 있음을 알 수 있었다.

빅데이터를 이용한 실시간 민간소비 예측 (Real-time private consumption prediction using big data)

  • 신승준;서범석
    • 응용통계연구
    • /
    • 제37권1호
    • /
    • pp.13-38
    • /
    • 2024
  • 최근 코로나19 등으로 경제 불확실성이 확대됨에 따라 민간 경제주체의 경제상황을 직접적으로 반영하는 민간소비 동향을 신속히 파악할 필요성이 높아지고 있다. 이에 본 연구는 기존 거시경제지표 뿐만 아니라 빅데이터를 종합적으로 활용하여 민간소비를 실시간으로 추정(nowcasting)하는 방법을 제안하였다. 특히 초고차원 빅데이터의 적합을 위해 활용 가능한 다양한 기계학습 방법론을 비교분석하여 민간소비 추정의 정확도를 향상시키고자 하였다. 실증 분석 결과, 빅데이터를 비롯한 가용 공변량의 수가 많은 경우에는 변수를 미리 선별하여 모형적합에 활용하는 것이 민간소비 예측 성능을 향상시킬 수 있음을 확인하였다. 또한 코로나19 이후 빅데이터의 반영이 민간소비 예측 성능을 더욱 크게 향상시킴에 따라 경제 불확실성이 높은 상황일수록 새로운 정보를 적시에 반영할 수 있는 고빈도 빅데이터의 활용가치가 높은 것으로 판단된다.