• 제목/요약/키워드: kernel learning

검색결과 247건 처리시간 0.021초

복소수 SVM을 이용한 목표물 식별 알고리즘 (Target Classification Algorithm Using Complex-valued Support Vector Machine)

  • 강윤정;이재일;배진호;이종현
    • 전자공학회논문지
    • /
    • 제50권4호
    • /
    • pp.182-188
    • /
    • 2013
  • 본 논문에서는 정지하고 있는 배경에서 움직이는 목표물을 식별하기 위해 PDR(pulse doppler radar)을 이용하여 수집한 복소수 신호를 처리하는 복소수 SVM(support vector machine)을 제안한다. SVM은 패턴인식 분야에서 널리 이용되나 분류에 이용되는 특징이 대부분 실수 데이터이다. 제안된 복소수 SVM은 실수 데이터, 허수 데이터 정보와 실수부와 허수부 사이의 교차 정보를 모두 이용하여 이동하는 목표물의 분류를 수행한다. 복소수 SVM을 설계하기 위해 최적화 조건 적용 시 실수축과 허수축에 대한 슬랙변수를 고려하였고, 복소수 데이터에 대한 KKT(Karush-Kuhn-Tucker) 조건을 이용하였다. 또한 복소수 거리를 이용한 RBF(radial basis function)를 커널함수로 적용하였다. 제안된 복소수 SVM의 성능을 평가하기 위해 PDR 센서로 수집된 복소 데이터를 기존의 SVM과 복소수 SVM을 이용하여 분류한 결과 기존의 SVM에 비해 복소수 SVM의 식별결과가 개와 사람 각각 8%, 10% 향상되었다.

문장구조 유사도와 단어 유사도를 이용한 클러스터링 기반의 통계기계번역 (Clustering-based Statistical Machine Translation Using Syntactic Structure and Word Similarity)

  • 김한경;나휘동;이금희;이종혁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권4호
    • /
    • pp.297-304
    • /
    • 2010
  • 통계기계번역에서 번역성능의 향상을 위해서 문장의 유형이나 장르에 따라 클러스터링을 수행하여 도메인에 특화된 번역을 시도하는 방법이 있다. 그러나 기존의 연구 중 문장의 유형 정보와 장르에 따른 정보를 동시에 사용한 경우는 없었다. 본 논문에서는 각 문장의 문법적 구조 유사도에 따른 유형별분류 기법과, 단어 유사도 정보를 사용한 장르 구분법을 적용하여 기존의 두 기법을 통합하였다. 이렇게 분류된 말뭉치에서 추출한 도메인 특화 모델과 전체 말뭉치에서 추출된 모델에서 보간법(interpolation)을 사용하여 통계기계번역의 성능을 향상하였다. 문장구조 유사도와 단어 유사도의 계산 방법으로는 각각 커널과 코사인 유사도를 적용하였으며, 두 유사도를 적용하여 말뭉치를 분류하는 과정에서는 K-Means 알고리즘과 유사한 기계학습 기법을 사용하였다. 이를 일본어-영어의 특허문서에서 실험한 결과 최선의 경우 약 2.5%의 상대적인 성능 향상을 얻었다.

모터 보호, 고장진단 및 제어를 위한 디지털 보호계전기 활용 전력감시제어 시스템 설계 (A Design of Power Management and Control System using Digital Protective Relay for Motor Protection, Fault Diagnosis and Control)

  • 이성환;안인석
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권10호
    • /
    • pp.516-523
    • /
    • 2000
  • In this paper, intelligent methods using digital protective relay in power supervisory control system is developed in order to protect power systems by means of timely fault detection and diagnosis during operation for induction motor which has various load environments and capacities in power systems. The spectrum pattern of input currents was used to monitor to state of induction motors, and by clustering the spectrum pattern of input currents, the newly occurrence of spectrums pattern caused by faults were detected. For diagnosis of the fault detected, the fuzzy fault tree was derived, and the fuzzy relation equation representing the relation between an induction motor fault and each fault type, was solved. The solution of the fuzzy relation equation shows the possibility of each fault's occurring. The results obtained are summarized as follows: 1) The test result on the basis of KEMC1120 and IEC60255, show that the operation time error of the digital motor protective relay is improved within ${\pm}5%$. 2) Using clustering algorithm by unsupervisory learning, an on-line fault detection method, not affected by the characteristics of loads and rates, was implemented, and the degree of dependency by experts during fault detection was reduced. 3) With the fuzzy fault tree, fault diagnosis process became systematic and expandable to the whole system, and the diagnosis for sub-systems can be made as an object-oriented module.

  • PDF

Support Vector Machines을 이용한 다중 클래스 문제 해결 (Solving Multi-class Problem using Support Vector Machines)

  • 고재필
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권12호
    • /
    • pp.1260-1270
    • /
    • 2005
  • 최근 기계학습 분야에서 커널머신을 이용한 대표적 학습기로 Support Vector Machines (SVM)이 주목 받고 있다. SVM은 통계적 학습이론에 기반하여 뛰어난 일반화 성능을 보여주며, 다양한 패턴인식 문제에 적용되고 있다. 그러나. SVM은 이진 분류기이므로 일반적인 다중 클래스 문제에 곧바로 적용할 수 없다. SVM을 다중 클래스 문제의 하나인 얼굴인식에 도입하기 위한 방법으로는, One-Per-Class와 All-Pairs가 대표적이다. 상기 두 방법은 다중 클래스 문제를 여러 개의 이진 클래스 문제로 분할하고, 이들을 다시 종합하여 최종 결정을 내리는 출력코딩이라는 일반적인 방법에 속한다. 본 논문에서는 이진 분류기인 SVM의 다중 클래스 분류기 확장 방안으로 출력코딩 방법론을 설명한다. 또한 출력코딩 방법론의 대표적인 이론적 기반인 ECOC(Ewor-Correcting Output Codes)를 근간으로 하는 새로운 출력코딩 방법들을 제안하고, 얼굴인식 실험을 통해 SVM을 기반 분류기로 사용할 경우의, 출력코딩 방법의 특성을 비교$\cdot$분석한다.

Constructing Negative Links from Multi-facet of Social Media

  • Li, Lin;Yan, YunYi;Jia, LiBin;Ma, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권5호
    • /
    • pp.2484-2498
    • /
    • 2017
  • Various types of social media make the people share their personal experience in different ways. In some social networking sites. Some users post their reviews, some users can support these reviews with comments, and some users just rate the reviews as kind of support or not. Unfortunately, there is rare explicit negative comments towards other reviews. This means if there is a link between two users, it must be positive link. Apparently, the negative link is invisible in these social network. Or in other word, the negative links are redundant to positive links. In this work, we first discuss the feature extraction from social media data and propose new method to compute the distance between each pair of comments or reviews on social media. Then we investigate whether we can predict negative links via regression analysis when only positive links are manifested from social media data. In particular, we provide a principled way to mathematically incorporate multi-facet data in a novel framework, Constructing Negative Links, CsNL to predict negative links for discovering the hidden information. Additionally, we investigate the ways of solution to general negative link predication problems with CsNL and its extension. Experiments are performed on real-world data and results show that negative links is predictable with multi-facet of social media data by the proposed framework CsNL. Essentially, high prediction accuracy suggests that negative links are redundant to positive links. Further experiments are performed to evaluate coefficients on different kernels. The results show that user generated content dominates the prediction performance of CsNL.

다중 클래스 SVM기반의 침입탐지 시스템 (Intrusion Detection System Based on Multi-Class SVM)

  • 이한성;송지영;김은영;이철호;박대희
    • 한국지능시스템학회논문지
    • /
    • 제15권3호
    • /
    • pp.282-288
    • /
    • 2005
  • 본 논문에서는 기존의 침입탐지 모델인 오용탐지 모델과 비정상 탐지 모델의 장점은 유지하되 단점은 보완하는 견지에서 새로운 침입탐지 모델을 제안한다. MMIDS로 명명된 새로운 침입탐지시스템은 다음의 평가 기준들을 모두 만족하는 차원에서 설계되었다: 1) 시스템에서 학습되지 않은 새로운 공격 유형의 신속한 발견; 2) 탐지된 공격 유형에 대한 세부적 정보의 제공; 3) 빠르고 효율적인 학습 및 갱신으로 인한 경제적인 시스템의 유지/보수; 4) 시스템의 점증성(incrementality) 및 확장성. MMIDS의 핵심 구성요소로 새롭게 제안된 다중 클래스 SVM은 빠르고 효율적인 학습 및 갱신이 가능하여 침입탐지 시스템의 유지보수 비용을 절감할 수 있다. 실험을 통해 유사한 공격 패턴에 대한 분류성능 및 각 공격 유형별 세분화 능력이 우수함을 보인다.

아이다부스트(Adaboost)와 원형기반함수를 이용한 다중표적 분류 기법 (Multi-target Classification Method Based on Adaboost and Radial Basis Function)

  • 김재협;장경현;이준행;문영식
    • 전자공학회논문지CI
    • /
    • 제47권3호
    • /
    • pp.22-28
    • /
    • 2010
  • 최근 기계학습 분야에서 커널머신을 이용한 대표적 분류기로 Adaboost가 주목받고 있다. Adaboost는 통계적 학습이론에 기반하여 뛰어난 일반화 성능을 보여주며, 다양한 패턴인식 문제에 적용되고 있다. 그러나, Adaboost는 이진 분류기이므로 다중표적 분류 문제에 곧바로 적용할 수 없다. 일반적으로 다중 분류 문제를 해결하는 기법으로 One-Vs-All 기법과 Pair-Wise 기법이 대표적이다. 이러한 두 기법은 다중 분류 문제를 여러 개의 이진 분류 문제로 분할하고, 이들을 다시 종합하여 최종 결정을 내리는 출력코딩이라는 일반적인 기법으로 실제 시스템 구성에 적합할만한 분류 성능을 보여주지 못하는 경우가 대부분이다. 본 논문에서는 이진 분류기인 Adaboost의 다중 분류 확장 방안으로 원형 기반 함수를 약한 분류기로 이용하는 Adaboost 기반 다중표적 분류 기법을 제안한다.

Sentinel-2 위성영상을 이용한 DMZ 산불 피해 면적 관측 기법 연구 (The Study of DMZ Wildfire Damage Area Detection Method Using Sentinel-2 Satellite Images)

  • 이슬기;송종성;이창욱;고보균
    • 대한원격탐사학회지
    • /
    • 제38권5_1호
    • /
    • pp.545-557
    • /
    • 2022
  • 본 연구는 직접적인 접근이 어려운 demilitarized zone (DMZ)의 산불 피해 지역을 파악하기 위하여, 고해상도 위성영상 및 머신러닝 기반의 감독 분류 기법을 이용하였다. 고해상도 위성 영상은 Sentinel-2 A/B를 이용하였으며, SVM 감독분류 기법을 기반으로 토지피복도를 산출하였다. DMZ 산불 피해 지역을 분류하기 위한 최적의 조합을 찾기 위하여 SVM 내에 다양한 커널과 밴드 조합에 따른 감독 분류를 진행하고 오차 행렬을 통해 정확도를 평가하였다. 또한, 2020년, 2021년은 위성영상 자료 기반의 산불 탐지 결과와 산불 연보의 피해 지역 면적 간의 비교를 통한 검증을 수행하였다. 이후, 현재 피해 면적 자료가 없는 2022년의 산불 피해 지역을 탐지함으로써 신뢰할 만한 수준의 결과를 신속적으로 파악하고자 하였다.

CNN 잡음감쇠기에서 필터 수의 최적화 (Optimization of the Number of Filter in CNN Noise Attenuator)

  • 이행우
    • 한국전자통신학회논문지
    • /
    • 제16권4호
    • /
    • pp.625-632
    • /
    • 2021
  • 본 논문은 잡음감쇠기에서 CNN(Convolutional Neural Network) 계층의 필터 수가 성능에 미치는 영향을 연구하였다 이 시스템은 적응필터 대신 신경망 예측필터를 이용하며 심층학습방법으로 잡음을 감쇠한다. 64-뉴런, 16-커널 CNN 필터와 오차 역전파 알고리즘을 이용하여 잡음이 포함된 음성신호로부터 음성을 추정한다. 본 연구에서 필터 수에 대한 잡음감쇠기의 성능을 검증하기 위하여 Keras 라이브러리를 사용한 프로그램을 작성하고 시뮬레이션을 실시하였다. 시뮬레이션 결과, 본 시스템은 필터 수가 16일 때 MSE(Mean Squared Error) 및 MAE(Mean Absolute Error) 값이 가장 작은 것으로 나타났으며 필터가 4개 일 때 성능이 가장 낮은 것을 볼 수 있다. 그리고 필터가 8개 이상이 되면 필터 수에 따라 MSE 및 MAE 값이 크게 차이나지 않는 것을 보여주었다. 이러한 결과로부터 음성신호의 주요 특징을 표현하기 위해서는 약 8개 이상의 필터를 사용해야 한다는 것을 알 수 있다.

Indoor Path Recognition Based on Wi-Fi Fingerprints

  • Donggyu Lee;Jaehyun Yoo
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권2호
    • /
    • pp.91-100
    • /
    • 2023
  • The existing indoor localization method using Wi-Fi fingerprinting has a high collection cost and relatively low accuracy, thus requiring integrated correction of convergence with other technologies. This paper proposes a new method that significantly reduces collection costs compared to existing methods using Wi-Fi fingerprinting. Furthermore, it does not require labeling of data at collection and can estimate pedestrian travel paths even in large indoor spaces. The proposed pedestrian movement path estimation process is as follows. Data collection is accomplished by setting up a feature area near an indoor space intersection, moving through the set feature areas, and then collecting data without labels. The collected data are processed using Kernel Linear Discriminant Analysis (KLDA) and the valley point of the Euclidean distance value between two data is obtained within the feature space of the data. We build learning data by labeling data corresponding to valley points and some nearby data by feature area numbers, and labeling data between valley points and other valley points as path data between each corresponding feature area. Finally, for testing, data are collected randomly through indoor space, KLDA is applied as previous data to build test data, the K-Nearest Neighbor (K-NN) algorithm is applied, and the path of movement of test data is estimated by applying a correction algorithm to estimate only routes that can be reached from the most recently estimated location. The estimation results verified the accuracy by comparing the true paths in indoor space with those estimated by the proposed method and achieved approximately 90.8% and 81.4% accuracy in two experimental spaces, respectively.