• Title/Summary/Keyword: kernel feature extraction

Search Result 56, Processing Time 0.031 seconds

Real-time Fault Diagnosis of Induction Motor Using Clustering and Radial Basis Function (클러스터링과 방사기저함수 네트워크를 이용한 실시간 유도전동기 고장진단)

  • Park, Jang-Hwan;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.6
    • /
    • pp.55-62
    • /
    • 2006
  • For the fault diagnosis of three-phase induction motors, we construct a experimental unit and then develop a diagnosis algorithm based on pattern recognition. The experimental unit consists of machinery module for induction motor drive and data acquisition module to obtain the fault signal. As the first step for diagnosis procedure, preprocessing is performed to make the acquired current simplified and normalized. To simplify the data, three-phase current is transformed into the magnitude of Concordia vector. As the next step, feature extraction is performed by kernel principal component analysis(KPCA) and linear discriminant analysis(LDA). Finally, we used the classifier based on radial basis function(RBF) network. To show the effectiveness, the proposed diagnostic system has been intensively tested with the various data acquired under different electrical and mechanical faults with varying load.

3D Rendering of Magnetic Resonance Images using Visualization Toolkit and Microsoft.NET Framework

  • Madusanka, Nuwan;Zaben, Naim Al;Shidaifat, Alaaddin Al;Choi, Heung-Kook
    • Journal of Multimedia Information System
    • /
    • v.2 no.2
    • /
    • pp.207-214
    • /
    • 2015
  • In this paper, we proposed new software for 3D rendering of MR images in the medical domain using C# wrapper of Visualization Toolkit (VTK) and Microsoft .NET framework. Our objective in developing this software was to provide medical image segmentation, 3D rendering and visualization of hippocampus for diagnosis of Alzheimer disease patients using DICOM Images. Such three dimensional visualization can play an important role in the diagnosis of Alzheimer disease. Segmented images can be used to reconstruct the 3D volume of the hippocampus, and it can be used for the feature extraction, measure the surface area and volume of hippocampus to assist the diagnosis process. This software has been designed with interactive user interfaces and graphic kernels based on Microsoft.NET framework to get benefited from C# programming techniques, in particular to design pattern and rapid application development nature, a preliminary interactive window is functioning by invoking C#, and the kernel of VTK is simultaneously embedded in to the window, where the graphics resources are then allocated. Representation of visualization is through an interactive window so that the data could be rendered according to user's preference.

Multiple Cause Model-based Topic Extraction and Semantic Kernel Construction from Text Documents (다중요인모델에 기반한 텍스트 문서에서의 토픽 추출 및 의미 커널 구축)

  • 장정호;장병탁
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.595-604
    • /
    • 2004
  • Automatic analysis of concepts or semantic relations from text documents enables not only an efficient acquisition of relevant information, but also a comparison of documents in the concept level. We present a multiple cause model-based approach to text analysis, where latent topics are automatically extracted from document sets and similarity between documents is measured by semantic kernels constructed from the extracted topics. In our approach, a document is assumed to be generated by various combinations of underlying topics. A topic is defined by a set of words that are related to the same topic or cooccur frequently within a document. In a network representing a multiple-cause model, each topic is identified by a group of words having high connection weights from a latent node. In order to facilitate teaming and inferences in multiple-cause models, some approximation methods are required and we utilize an approximation by Helmholtz machines. In an experiment on TDT-2 data set, we extract sets of meaningful words where each set contains some theme-specific terms. Using semantic kernels constructed from latent topics extracted by multiple cause models, we also achieve significant improvements over the basic vector space model in terms of retrieval effectiveness.

A Feature Based Approach to Extracting Ground Points from LIDAR Data (LIDAR 데이터로부터 지표점 추출을 위한 피쳐 기반 방법)

  • Lee, Im-Pyeong
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.265-274
    • /
    • 2006
  • Extracting ground points is the kernel of DTM generation being considered as one of the most popular LIDAR applications. The previous extraction approaches can be mostly characterized as a point based approach, which sequentially examines every individual point to determine whether it is measured from ground surfaces. The number of examinations to be performed is then equivalent to the number of points. Particularly in a large set, the heavy computational requirement associated with the examinations is obviously an obstacle to employing more sophisticated criteria for the examination. To reduce the number of entities to be examined and produce more robust results, we developed an approach based on features rather than points, where a feature indicates an entity constructed by grouping some points. In the proposed approach, we first generate a set of features by organizing points into surface patches and grouping the patches into surface clusters. Among these features, we then attempt to identify the ground features with the criteria based on the attributes of the features. The points grouped into these identified features are labeled ground points, being used for DTM generation afterward. The Proposed approach was applied to many real airborne LIDAR data sets. The analysis on the results strongly supports the prominent performance of the proposed approach in terms of not only the computational requirement but also the quality of the DTM.

SVM-Based EEG Signal for Hand Gesture Classification (서포트 벡터 머신 기반 손동작 뇌전도 구분에 대한 연구)

  • Hong, Seok-min;Min, Chang-gi;Oh, Ha-Ryoung;Seong, Yeong-Rak;Park, Jun-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.508-514
    • /
    • 2018
  • An electroencephalogram (EEG) evaluates the electrical activity generated by brain cell interactions that occur during brain activity, and an EEG can evaluate the brain activity caused by hand movement. In this study, a 16-channel EEG was used to measure the EEG generated before and after hand movement. The measured data can be classified as a supervised learning model, a support vector machine (SVM). To shorten the learning time of the SVM, a feature extraction and vector dimension reduction by filtering is proposed that minimizes motion-related information loss and compresses EEG information. The classification results showed an average of 72.7% accuracy between the sitting position and the hand movement at the electrodes of the frontal lobe.

Constructing Negative Links from Multi-facet of Social Media

  • Li, Lin;Yan, YunYi;Jia, LiBin;Ma, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2484-2498
    • /
    • 2017
  • Various types of social media make the people share their personal experience in different ways. In some social networking sites. Some users post their reviews, some users can support these reviews with comments, and some users just rate the reviews as kind of support or not. Unfortunately, there is rare explicit negative comments towards other reviews. This means if there is a link between two users, it must be positive link. Apparently, the negative link is invisible in these social network. Or in other word, the negative links are redundant to positive links. In this work, we first discuss the feature extraction from social media data and propose new method to compute the distance between each pair of comments or reviews on social media. Then we investigate whether we can predict negative links via regression analysis when only positive links are manifested from social media data. In particular, we provide a principled way to mathematically incorporate multi-facet data in a novel framework, Constructing Negative Links, CsNL to predict negative links for discovering the hidden information. Additionally, we investigate the ways of solution to general negative link predication problems with CsNL and its extension. Experiments are performed on real-world data and results show that negative links is predictable with multi-facet of social media data by the proposed framework CsNL. Essentially, high prediction accuracy suggests that negative links are redundant to positive links. Further experiments are performed to evaluate coefficients on different kernels. The results show that user generated content dominates the prediction performance of CsNL.