• Title/Summary/Keyword: keratinocyte phagocytosis

Search Result 2, Processing Time 0.017 seconds

Regulation of Melanosome Transfer to and Distribution in Keratinocytes

  • Boissy, Raymond E.;Minwalla, Ljiljana
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.213-216
    • /
    • 2002
  • Skin pigmentation, also known as complexion coloration, results from the biosynthesis of melanin within the melanocytes of the Stratum basalum and the subsequent transfer, translocation, and degradation of this pigment to, in, and by the neighboring keratinocytes respectively, Melanins are produced and retained in melanosomes synthesized in the cell body that are translocated along the dendrites using microtubules via motor proteins. Melanosomes are eventually captured and retained at the tips of dendrites by attachment to the peripherally localized actin. Melanosomes reaching the dendritic tips are transferred to keratinocytes, primarily via phagocytosis of released melanosomes by keratinocytes. Molecules responsible for cell/cell recognition and interaction that regulate transfer are being identified. Some of these putative mediators appear to be affected by ultraviolet radiation. After the keratinocytes receive melanosomes, the granules are distributed individually or as clusters in dark versus light skin respectively. These melanosomes are then aggregated over the nucleus for photoprotection ofkeratinocyte DNA and eventually degraded.

  • PDF

A Study on the Inhibition of Skin Pigmentation by Lobaric Acid as Protease Activated Receptor-2 Antagonist (Protease Activated Receptor-2의 길항제로서 Lobaric Acid의 피부 색소침착 억제 효능 연구)

  • Goo, Jung Hyun;Lee, Ji Eun;Myung, Cheol Hwan;Park, Jong Il;Hwang, Jae Sung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.3
    • /
    • pp.243-252
    • /
    • 2015
  • Melanosome, the pigment granule in melanocyte, determines the color of skin when it moves into the keratinocyte. Inhibition of melanosome transfer from melanocyte to keratinocyte results in skin depigmentation. Protease activated receptor-2 (PAR-2) is involved in signal transduction systems via cell membrane and increases the melasome transfer when it is activated by cleavage of their extracellular amino acid sequence by trypsin or by a peptide such as SLIGKV. Here, we showed that lobaric acid inhibited PAR-2 activation and affected the mobilization of $Ca2^+$. The uptake of fluorescent microspheres and isolated melanosomes from melan-a melanocytes to keratinocytes induced by SLIGKV were inhibited by lobaric acid. Also, confocal microscopy studies illustrated a decreased melanosome transfer to keratinocytes in melanocyte-keratinocyte co-culture system by lobaric acid. In addition, lobaric acid induced visible skin lightening effect in human skin tissue culture model, melanoderm$^{(R)}$. Our data suggest that lobaric acid could be an effective skin lightening agent that works via regulation of phagocytic activity of keratinocytes.