• Title/Summary/Keyword: kenaf

Search Result 174, Processing Time 0.029 seconds

Mechanical Properties of Alkali Treated Kenaf Fiber Filled PP Bio-Composites (알칼리 처리된 Kenaf 섬유가 충전된 Polypropylene/Kenaf 바이오복합재의 기계적 특성)

  • Kim, Samsung;Lee, Byoung-Ho;Kim, Hyun-Joong;Oh, Sei Chang;Ahn, Sye-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.222-230
    • /
    • 2009
  • This study was to investigate the effect of alkali treatment for long kenaf fiber to improve fiber surface characterics by removal of wax, lignin and hemicellulose which affect adversely for matrix union. SEM observation was also studied to check out the interface adhesion improvement by the alkali pre-treatment. From the result, interface coherence increased by 3% alkali pre-treatment and reached a maximum by 5% alkali pre-treatment. However, the 3% the bio-composites treated with 3% alkali was highest tensile and flexural strength than other.

Microscopic Observation of Kenaf by Optical and Scanning Electron Micrograph (Kenaf 구성 세포의 현미경적 관찰)

  • Yoon, Seung-Lak
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.2
    • /
    • pp.47-54
    • /
    • 2009
  • Anatomical characteristics of kenaf were investigated in transverse, radial and tangential direction by optical and scanning electron micrograph. Kenaf was made up of bast fibers, wood fibers, vessels and parenchyma cells. Bast fibers were long slender cells with different types of pits. The shape of wood fibers were in various ways and pointed at the ends. The pits were observed on the surface of bast fibers. Kenafs were diffuse and radial porous. and composed of solitary pores and two or three radial pore multiples. Various types of vessels were observed. The pits showed alternate pitting and larger diameter than other cells. Parenchyma cells were rectangular or square with different shapes of pith parenchyma cells compared to conventional types of parenchyma cells in wood. The number of pith on the surfaces were small.

The Change of Kenaf Fiber Characteristics by the Contents of Noncellulosic Material (비셀룰로오스 함량에 따른 케나프 섬유의 특성변화)

  • Lee, Hye-Ja;Han, Young-Sook;Yoo, Hye-Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.11 s.158
    • /
    • pp.1581-1588
    • /
    • 2006
  • The effects of removal of lignin or hemicellulose on the cottonizing and pulping characteristics of kenaf fiber were studied by comparing the conditions of non-cellulosic material contents, fiber lengths and dyeability. And the effects of lignin or hemicellulose on dyeability of the kenaf fiber using CI Direct Green 26 and CI Direct Red 81 were investigated. The results were as follows. The lignin contents decreased and the kenaf fiber became shorter and finer as the reaction time with sodium chlorite increased. The hemicellulose could be removed by treating sodium hydroxide solution to the fiber from which the lignin partly removed. The 80% of hemicellulose could be removed by 5% of sodium hydroxide solution in 5 minutes. But if lignin were not removed at all, hemicellulose could not be removed. The fiber lengths proper for apparel were obtained after treating sodium chlorite for 10-20 minutes and those for pulping were obtained after treating sodium chlorite for 40 minutes. The kenaf fibers from which lignin and hemicellulose partly removed were dyed with CI Direct Green 26 and CI Direct Red 81. Their dyeability increased as the removal rates of lignin increased. The ${\Delta}E$ values of kenaf fiber dyed with CI Direct Green 26 were lower than CI Direct Red 81.

In vitro and in vivo evaluation of kenaf (Hibiscus cannabinus L.) as a roughage source for beef cattle

  • Oh, Seongjin;Mbiriri, David Tinotenda;Ryu, Chaehwa;Lee, Kangheon;Cho, Sangbuem;Choi, Nag-Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.10
    • /
    • pp.1598-1603
    • /
    • 2018
  • Objective: The goal of this study was to evaluate kenaf as a roughage source in vitro and its effects on meat quality of Hanwoo (Korean native) cattle. Methods: Three roughage materials, rice straw silage, ryegrass silage, and kenaf silage, were tested in a batch culture and feeding trial. Rumen fermentation parameters, including gas, pH, volatile fatty acid (VFA), and ammonia were analyzed. In the feeding trial, Hanwoo steers ($373.5{\pm}5.1kg$, n = 36, 11 month of age) were divided into three feeding groups (n = 12 each). Animals were fed with each silage and concentrate until the fattening stage. Results: Crude protein, ether extract, and non-structural carbohydrates were greater in kenaf silage. Total gas production was higher in ryegrass silage, followed by kenaf silage and rice straw silage (p<0.05). Total VFA and individual VFA (acetate, propionate, and n-butyrate) were greater in kenaf silage than rice straw silage (p<0.05). In vitro dry matter digestibility showed a similar trend to that of total gas and VFA production; it was higher in ryegrass silage and lower in rice straw (p<0.05). Throughout the feeding trial, the rice straw silage group showed significantly greater average daily gain than did the others (p<0.05). The feed conversion ratio in the group fed kenaf silage was significantly greater than that of others (p<0.05). No significant differences were observed in yield or quality traits, including carcass weight, ribeye area, backfat thickness, and scores for marbling, meat color, and fat color (p>0.05). Conclusion: The results indicated that no negative effects on growth performance and carcass characteristics occurred across treatments. Therefore, kenaf could be substituted for rice straw, which is most widely used as a roughage source in Korea.

Hanji Manufacturing from Bast Fibers of Kenaf, Hibiscus cannabinus (양마의 인피섬유를 이용한 한지제조)

  • Cho, Nam-Seok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.4
    • /
    • pp.1-9
    • /
    • 2008
  • The utilization of non-woody fibers with the fast growing annual plants has occurred in the paper industry to replace wood and preserve environment of the earth. The non-woody fibers generally used for papermaking are paper mulberry, gampi, manila hemp, rice straw, bamboo, and coton linter etc.. Recently Kenaf has been spot-lighted for the same application. Kenaf is an annual plant of Hibiscus species of Malvaceae family. Kenaf, a rapid growing and high harvesting non-woody fiber plant, was identified as one of the promising fiber sources for the production of paper pulp. This study was carried out to investigate the pulping characteristics of Kenaf bast fiber for Hanji (traditional Korean paper) manufacturing by different pulping methods, such as alkali, alkali-peroxide and sulfomethylated pulpings. It was possible to make superior grade of Hanji. Especially sulfomethylated pulping was resulted in superior pulp in terms of higher yields and qualities in comparison to those of the other pulping methods. Hanji from sulfomethylated pulp was shown the highest brightness of over 60% and higher sheet strength. In addition, the morphological features of pulp fibers (pulp compositions) affect to the sheet properties. Therefore the effect of fiber distribution index(FDI) which was calculated from the data of Confocal laser scanning microscopy(CLSM) on the sheet properties of Kenaf Hanji was also discussed.

Effect of Enzyme Retting on the Fiber Separation of Kenaf Bast - influence of chelator - (효소 레팅에 의한 케냐프 섬유의 분리 -킬레이터의 영향-)

  • 이혜자;안춘순;김정희;유혜자;한영숙;송경헌
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.7
    • /
    • pp.873-881
    • /
    • 2004
  • This research was aimed to investigate the effect of enzyme and the addition of chelators on rotting of the Kenaf bast. Enzyme rotting was effective only when the chelators were added with the enzyme. EDTA was a more effective chelator than oxalic acid under 1% concentration. There was no difference in the rotting effect under different enzyme concentration levels, and under different treatment time and temperature. Therefore, it was found that enzyme rotting can be carried out with low enzyme concentration(0.125%) at room temperature. Retting time can be shortened when higher enzyme concentration and higher temperature are applied. Cellulose I structure of kenaf fiber did not change after enzyme rotting, and different enzyme concentration did not affect the crytallinity structure. Non-cellulosic matters such as hemicellulose, lignin, and pectin were present in the descending order in the enzyme rotted kenaf fiber, and there were no differences in their amounts due to enzyme concentration levels. There was no difference in the dyeabilities of kenaf fiber rotted with different enzyme concentration levels. Enzyme rotted kenaf fiber showed better cyeability when pectin, lignin, and hemicellulose were removed.

Nano-Kenaf Cellulose Effects on Improved Mechanical Properties of Polypropylene Composite (나노 케냐프 셀룰로오스가 폴리프로필렌 복합소재의 물성 증가에 미치는 영향)

  • Oh, Jeong Seok;Lee, Seong-Hoon;Bumm, Sughun;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.613-617
    • /
    • 2013
  • The effects of nano size kenaf cellulose fiber on mechanical property of polypropylene (PP) composite were investigated. The addition of nano-kenaf in place of natural kenaf showed higher tensile strength, flexural strength, impact strength, and heat deflection temperature compared to the natural kenaf filled PP composite, while it shows lower melt flow index, elongation%, and flexural modulus. These seemed to be due to the increased surface area of nano-kenaf fiber contacting PP matrix and reduced impurities such as volatile extractives on the fiber surface.

The Properties of Kenaf/Polyester Blended Nonwovens (케나프/폴리에스테르 혼방 부직포의 특성)

  • Lee, Hye-Ja;Yoo, Hye-Ja;Han, Young-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.7
    • /
    • pp.1119-1127
    • /
    • 2007
  • Nonwovens have been widely used in various regions from the households to the industrial, agricultural and medical goods. Synthetic fibers have been used for source of nonwovens commonly because of their useful and economic properties. They are not only main factor causing environmental problems but also spend huge cost to renew the environmental disruption by them. Nonwovens must have both cost-competitiveness and environment-friendly property to be the desirable sources in 21th centuries. For meet these needs, it is suitable for the times that economical and environmentally-safe kenaf fibers would be used as raw materials of nonwovens. Kenaf and polyester fibers were blended in 4 types of ratio : 0/100, 20/80, 40/60, 60/40 were needle-punched. The nonwovens properties such as color values, surface appearance, strength, elongations, stiffness, moisture regain, water and oil absorbency, and electrification were tested. As the results, tensile and tear strengths, water and oil absorbency were maximum at 20/80 kenaf/polyester blend nonwoven, because of effecting by nonwoven structure and fiber properties. The moisture regain were increased according to kenaf were blended and the eletrification reduced in proportion to the kenaf fibers by chemical property of fiber composed nonwovens.

Preparation of Cement Composites Containing Kenaf Fiber Has Been Gamma-ray Grafted with Poly(ethylene glycol) Methacrylate (감마선 조사를 이용하여 Poly(ethylene glycol) Mathacrylate가 그래프팅된 케냐프 섬유를 포함하는 시멘트 복합재료의 제조)

  • Lee, Byoung-Min;Kang, Phil-Hyun;Jeun, Joon Pyo
    • Journal of Radiation Industry
    • /
    • v.8 no.1
    • /
    • pp.49-52
    • /
    • 2014
  • Kenaf fibers have excellent properties and possess the potential to be outstanding reinforcing fillers in cement. The grafting of poly(ethylene glycol) methacrylate (PEGMA) to the kenaf fibers is important in improving the compatibility between the fibers and the cement. PEGMA was grafted onto kenaf fibers using gamma-ray radiation. The radiation dose ranged from 20 to 60 kGy, and the dose rate was $10kGy\;h^{-1}$. The degree of grafting increased with increased radiation doses. FT-IR analysis revealed an increase in PEGMA content after gamma-ray radiation induced grafting, further evincing the attachment of PEGMA to the kenaf fibers. The mechanical properties of the gamma-ray grafted kenaf fiber/cement composites were superior to those of the ungrafted kenaf fiber/cement specimens.

Pulp and Paper from Kenaf Bast Fibers

  • Ashori Alireza
    • Fibers and Polymers
    • /
    • v.7 no.1
    • /
    • pp.26-29
    • /
    • 2006
  • Samples of kenaf (Hibiscus cannabinus) grown in Malaysia were examined to determine the kraft pulp and paper-making properties of their bast (or bark) fibers. Using kraft pulping process showed that bast fibers were relatively easy to cook resulting good pulp yields in the range of 45-51 %. The bast pulp produced sheets with great density, tear index and dry zero-span breaking length. Kenaf bast fiber is considered promising for production of high-grade printing, writing and specialty papers.