• Title/Summary/Keyword: kefir

Search Result 85, Processing Time 0.028 seconds

Functional Characteristics of Kefir as a Fermented Dairy Product: A Review (발효낙농유제품인 Kefir 다양한 기능 및 특성: 총설)

  • Chon, Jung-Whan;Kim, Hyun-Sook;Song, Kwang-Young;Kim, Dong-Hyeon;Kim, Hong-Seok;Yim, Jin-Hyeok;Choi, Dasom;Hwang, Dae-Geun;Kim, Young-Ji;Lee, Soo-Kyung;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.99-108
    • /
    • 2013
  • Kefir is a unique fermented dairy product resulting from combined lactic acid and alcoholic fermentation of lactose in milk. Kefir is produced by the microbial activity of kefir grains. Kefir has numerous health benefits such as the reduction of cholesterol levels, stimulation of the immune system, antimutagenic and anticarcinogenic properties, and improvements of lactose intolerance. Furthermore, kefir is excellent as both a dietetic beverage and for protection against various diseases in small babies. Therefore, kefir has recently been regarded as an important functional dairy food. To date, the majority of research on kefir has focused on the applications of functional kefir using advanced biotechnology methods. The purpose of this review article is to facilitate the recognition of kefir as a novel functional food.

  • PDF

Antidiabetic Potential of Kefir Combination from Goat Milk and Soy Milk in Rats Induced with Streptozotocin-Nicotinamide

  • Nurliyani,;Harmayani, Eni;Sunarti,
    • Food Science of Animal Resources
    • /
    • v.35 no.6
    • /
    • pp.847-858
    • /
    • 2015
  • The study aimed to evaluate the effect of kefir combination from goat milk and soy milk on lipid profile, plasma glucose, glutathione peroxidase (GPx) activity and the improvement of pancreatic β-cell in diabetic rats. Male rats were divided into five treatments: normal control, diabetic control, goat milk kefir, combination of goat milk-soy milk kefir and soy milk kefir. All rats were induced by streptooztocin-nicotinamide (STZ-NA), except for normal control. After 35 d experiment, the rats were sampled for blood, sacrificed and sampled for pancreatic tissues. Results showed that diabetic rats fed kefir combination had higher (p<0.05) triglyceride than the rats fed goat milk or soy milk kefir. Decreasing of plasma glucose in diabetic rats fed kefir combination was higher (p<0.05) than rats fed goat millk kefir. The activity of GPx in diabetic rats fed three kinds of kefir were higher (p<0.01) than untreated diabetic rats. The average number of Langerhans and β-cells in diabetic rats fed kefir combination was the same as the normal control, but it was higher than diabetic control. It was concluded that kefir combination can be used as antidiabetic through maintaining in serum triglyceride, decreasing in plasma glucose, increasing in GPx activity and improving in pancreatic β-cells.

Effect of Kefir Extract on th Growth of Serum-Free Mouse Embyro (SFME) Cells

  • Jang, Hae-Dong;David Barnes
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.4
    • /
    • pp.225-229
    • /
    • 2000
  • The antioxidative and protective activities of kefir, low-fat dry milk (NFDM) extract and fractions on SFME cells in serum-free medium were investigated. Kefir and low-fat kefir and NFDM extract were made by solubilizing the freeze dried powder forms in deionized water, filtering through glass prefilter, 12 ㎛ and 2 ㎛ membrane, and demineraling with chelating resin. Kefir, low-fat kefir and NFDM extract were fractioned into dialyzate and retentate by dialysis with membrane tube having the molecular cut-off of 3,500 Dalton. An antioxidative activity was analyzed by the in vitro model system using a linoleic acid. In the case of kefir an antioxidative activity was detected only in the retentate of kefir extract. On the other hand NFDM showed an antioxidative activity in extract, demineralized extract, dialyzate and retentate. The retentate of kefir extract had the higher antioxidative activity than that of NFDM extract. Kefir showed the protective effect of SFME cells in serum-free medium in extract, demineralized extract and retentate, but low-fat kefir didn't. NFDM had the similar protective effect on SFME cells as extract, demineralized extract and retentate of kefir.

  • PDF

Study of the Microbial and Chemical Properties of Goat Milk Kefir Produced by Inoculation with Taiwanese Kefir Grains

  • Chen, Ming-Ju;Liu, Je-Ruei;Lin, Chin-Wen;Yeh, Yu-Tzu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.5
    • /
    • pp.711-715
    • /
    • 2005
  • One of the prerequisites for the successful implementation of industrial-scale goat kefir production is to understand the effects of different kefir grains and culture conditions on the microbial and chemical properties of the goat kefir. Thus, the objectives of the present study were to evaluate the characteristics of kefir grains in Taiwan on the microbial and chemical properties of goat milk kefir, as well as to understand the influence of culture conditions on production of medium chain-length triglycerides (MCT). Kefir grains were collected from households in northern Taiwan. Heat-treated goat milk was inoculated with 3-5% (V/W) kefir grains incubated at 15, 17.5, 20 or 22.5$^{\circ}C$ for 20 h, and the microflora count, ethanol content, and caproic (C6), caprylic (C8), and capric acid (C10) levels measured at 4 h intervals. Our results indicate that incubation with kefir grains results in 10$^6$-10$^7$ CFU/ml microflora count and 1.18 g/L of ethanol content at 20 h of fermentation. Incubation with 5% kefir grain at 20-22.5$^{\circ}C$ produces the highest MCT levels.

Nutritional Effects and Antimicrobial Activity of Kefir (Grains)

  • Shen, Ying;Kim, Dong-Hyeon;Chon, Jung-Whan;Kim, Hyunsook;Song, Kwang-Young;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • Kefir exhibits antimicrobial activity in vitro against gram-positive and gram negative bacteria, as well as some fungi. The ability of LAB to inhibit the growth of closely related bacteria is well known. This inhibition of pathogenic and spoilage microbes may be due to the production of organic acids, hydrogen peroxide, acetaldehyde, diacetyl, carbon dioxide, or bacteriocins. Lactobacilli are the major contributors to acid production and, hence, a determining factor in the flavor development in kefir. Lactic acid, proteolytic activity, and acetaldehyde are the essential flavor compounds in kefir. Both acid and bacteriocins contribute to the antimicrobial activity of kefir and kefir grains. Kefir is rich in proteins, calcium, vitamin $B_{12}$, niacin, and folic acid. Many studies have investigated the benefits of consuming kefir and have shown that it is a natural probiotic, which when consumed regularly, can help relieve intestinal disorders, promote bowel movement, reduce flatulence, and improve the overall health of the digestive system. Tibetan kefir, which is different from traditional kefir, is produced in China. It has been reported to exhibit antimicrobial activity that is nearly identical to that of traditional kefir. Kefir production is considered a rapidly growing food industry in China.

PCR-based Identification of Microorganisms in a Kefir Grain

  • Koo, Won Hoe;Seo, Min-Gook;Ahn, Jung Hoon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.238-244
    • /
    • 2007
  • Nowadays many people are concerned about being healthy, and many dairy products are taken as health supplementary foods. Among dairy products, kefir, also called as Tibet mushroom, is a yogurt fermented by kefir grain, which is a mixture of lactic acid bacteria and yeasts. Although there are many empirical evidences that kefir is very influential for human body, the exact reason is not definitively discovered. Therefore, it would be useful to understand characteristics of a kefir grain and to categorize bacteria in a kefir grain. In this paper, molecular biological apparatus such as PCR, electrophoresis, PCR purification, DNA sequencing were used to identify and classify the species of lactic acid bacteria and yeast in a kefir grain. We used PCR-based identification method using 16S rRNA primer and Internal Transcribed Spacer (ITS) primer. We identified 6 different species which were selected on different medium. In addition, observation with scanning electron microscope (SEM) enabled us to grasp an external shape of the kefir grain. Although we found a limited number of microbial species, more intensive research are needed for extensive identification of microorganism species in Korean kefir grain.

  • PDF

Physicochemical Properties of Kefir as Dietary Supplementary for Curing the Diabetic Mouse (당뇨병 치료 보조식품으로서의 Kefir의 이화학 특성)

  • Lee, Jong-Ik;Song, Kwang-Young;Chon, Jung-Whan;Hyeon, Ji-Yeon;Seo, Kun-Ho
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.4
    • /
    • pp.462-469
    • /
    • 2010
  • This study was conducted to investigate the physicochemical properties of Kefir. The general composition of Kefir cultured in skim milk or milk was, respectively, 90.0 and 87.8% water, 3.2 and 3.0% protein, 0.45 and 3.64% lipid, 3.96 and 4.14% lactose, and 0.77 and 0.68% ash. Titratable acidity(TA) and pH of Kefir were 0.77 and 4.55, respectively. The amount of $CO_2$ production was 6.23%, and the concentration of alcohol was 1.4%. Kefir grain as observed by scanning electron microscope was a complex mixture of lactic acid bacteria and yeast in a symbiotic association.

Study on Skin Care Properties of Milk Kefir Whey

  • Chen, Ming-Ju;Liu, J.R.;Sheu, J.F.;Lin, C.W.;Chuang, C.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.6
    • /
    • pp.905-908
    • /
    • 2006
  • The purpose of this research was to study the effects of kefir whey (kefir whey, peptides, lactic acid) on skin care properties including skin lightening effect and acne treatment. The final aim was to develop a new cosmetic product and enhance the value of dairy products. The results of skin lightening tests showed that all three kefir whey components (kefir whey, peptides and lactic acid) had inhibitory ability against melanin synthesis. Furthermore, copper chelating analysis demonstrated that both kefir whey and kefir whey peptides could chelate the copper in tyrosinase, which might explain the mechanism of inhibition. The ability for acne treatment indicated that lactic acid level higher than 60 mg/ml could inhibit the growth of Propionibacterium acne, whereas no inhibition was found with other components.

The Effects of Kefir on MA-104 Cells Infected with Human Rotavirus and Diabetic Mouse; Review (Kefir가 HumanRotavirus의 세포 감염 억제 및 당뇨병 Mouse에 미치는 영향;총설)

  • Lee, Jong-Ik;Song, Kwang-Young;Chon, Jung-Whan;Hyeon, Ji-Yeon;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.1-15
    • /
    • 2011
  • Kefir originated from the Caucasian mountains is a cultured milk beverage of ancient lineage obtained by a combined acidic and alcoholic fermentation. Many scientists revealed the kefir has lots of good effect for human health. Unfortunately, there is no study to improve the diabetic symptoms taking kefir diet. Hence the objective of this review paper was to research the possibility for diabetic diet supplementary as Kefir.

  • PDF

The Effects of the Addition of Orange and Grape Concentrates, and Fructose on the Quality Characteristics of Soy Kefir (오렌지 및 포도 농축액과 과당의 첨가량에 따른 soy kefir의 품질특성)

  • Lee, Sook-Young;Na, Sung-Hoon;Lee, See-Young
    • Journal of the Korean Society of Food Culture
    • /
    • v.21 no.3
    • /
    • pp.330-335
    • /
    • 2006
  • The objectives of this study were to characterize the quality of soy kefir made with soymilk in combination with fructose (5%, 10%) and one of the extracts from orange (10%, 15%) and grape (5%, 10%) with differently adjusted amounts as defendant variables. The lactic acid bacteria, yeast and total microbial counts of soy kefir were respectively $1.3{\times}10^7$ CFU/ml, $1.6{\times}10^8$ CFU/ml, $1.5{\times}10^8$ CFU/ml, soy kefir was propered to drink. pH of soy kefir mixed by orange and grape extracts was decreased significantly according to add fructose 5%. Acidity became significantly high when orange and grape extracts were added, which means acidity showed similar tendency in the opposite direction. The saccharinity of soy kefir was not significantly in orange extract, but soy kefir added fructose 10% was high more than fructose 5% in grape extract. In sensory evaluation, soy kefirs added orange extract 15%, fructose 5% and grape extract 10%, fructose 5% were estimated highly on color, astrigent taste, sour taste, mouth feel and overall quality.