• Title/Summary/Keyword: kaolin activation

Search Result 21, Processing Time 0.033 seconds

Effect of the Heating Temperature on the Alkali-activation Reaction of Calcined Kaolin Powder (열처리 카올린 분말의 알칼리활성화 반응에 미치는 가열온도의 영향)

  • Kim, Sung Gon;Song, Tae Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.601-607
    • /
    • 2012
  • The alkali-activation reaction of two types of typical kaolin calcined at various lower temperatures was investigated at room temperature and at elevated temperatures. For the assessment of the reactivity, the temperature increase and the setting time of pastes prepared with calcined kaolin and sodium/potassium hydroxide solution were measured. Unlike raw kaolin, calcined kaolin samples prepared at various temperature showed an alkali-activation reaction according to the different aspects of the changes in the mineral phases. The reactivity with alkaline solutions was exceedingly activated in the samples calcined at $600-650^{\circ}C$, but the reactivity gradually decreased as the temperature increased in a higher temperature range, most likely due to the changes in the crystal structure of the dehydrated kaolin. The activation effect of the calcination treatment was achieved at reaction temperatures that exceeded $60^{\circ}C$ and was enhanced as the temperature increased. The reactivity of the calcined kaolin with an alkaline solution was more enhanced with the solution of a higher concentration and with a solution prepared from sodium hydroxide rather than potassium hydroxide.

Activating Temperature of Kaolin As a Cement Admixture

  • Park, Hee-Yong;Hwang, Hey-Zoo;Kim, Moo-Han;Kim, Moon-Han
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.3-9
    • /
    • 2001
  • This research concerns the effect of kaolin as material of cement admixture. which has the advantage of low price and high adaptability. Kaolin, a kind of soil, is well known as a raw material of pottery. which is widely scat-tered on the earth (especially in Korea). This research shows the method and process for activating kaolin to have the properties of a cement admixture through experiment. In the experiments, kaolin is baked in high temperature and then cooled suddenly to be activated. The temperature zone and time span, on which kaolin is activated are examined. The research looks over the effect of the activated kaolin based on several criteria regarding to chemical and physical characteristic of general admixtures. The results of this research are as follows; kaolin start activation at the temperature above 50$0^{\circ}C$ and make ends of activation at the temperature below 95$0^{\circ}C$ and there was little effect by the change of duration. It is concluded that compressive strength can be increased by putting activated kaolin in the concrete and the activated kaolin is good for water resistance and anti-chemical , and that it is effective for protecting the leakage of hazardous article like Cl- and for protecting damage by an organic salt like acid. The activated kaolin of proper temperature and time is effective in compressive strength, salt resistance and acid resistance. The adaptability of activated kaolin as a cement admixture was shown through this research.

  • PDF

Studies on the Adsorption Properties of Korean Kaolin IV The adsorption of bacteria by activated halIoysiste

  • Chung, Kyeong-Soo;Rhee, Gye-Ju
    • Archives of Pharmacal Research
    • /
    • v.10 no.4
    • /
    • pp.228-231
    • /
    • 1987
  • Studies on the adsorption of four kinds of bacteria, Staphylococcus aureus, Sarcina lutea, Escherichia coli and Serratia marcescens by activated Korean Kaoline have been carried out to innovate utilization as adsosrbent preparations. In connection with particle size and size fraction, the adsorption was examined by colony counting and spectroscopy. Korean kaolin was purified from Hadong white species of preminum grade and three size fractions were derived from passage through BS # 100, #200 and # 325 mesh sieves, respectively. These were activated at $105^{\circ}$or $280^{\circ}$ for three hours and at $550^{\circ}C$ for one hours. The results indicated that the adsorbing power of Korean kaolin was superior for S. aureus and S. lutea, but E. coli and S. marcescens were not adsorbed by clays. The smaller the particle size, the greater was adsorbing power for Gram-positive bacteria. Threre appears to be justification for its investigations as an ingredient in intestinal adsorbent preparations.

  • PDF

Study on CO2-Coal Gasification Reaction Using Natural Mineral Catalysts (천연 광물질을 이용한 CO2 석탄 촉매 가스화 반응 특성 연구)

  • Lee, Roosse;Sohn, Jung Min
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.56-61
    • /
    • 2016
  • In this study, the effect of natural minerals on the reaction kinetics for lignite-$CO_2$ gasification was investigated. After physical mixing of lignite from Meng Tai area with 5 wt% of each natural mineral catalysts among Dolomite, Silica sand, Olivine and Kaolin, $CO_2$ gasification was performed using TGA at each 800, $850^{\circ}C$ and $900^{\circ}C$. The experimental data was analyzed with volumetric reaction model (VRM), shrinking core model (SCM) and modified volumetric reaction model (MVRM). MVRM was the most suitable among three models. As increasing the reaction temperature, the reaction rate constant became higher. With natural mineral catalysts, the reaction rate constant was higher and activation energy was lower than that of without catalysts. The lowest activation energy, 114.90 kJ/mol was obtained with silica sand. The highest reaction rate constant at $850^{\circ}C$ and $900^{\circ}C$ and lower reaction rate constant at $800^{\circ}C$ were obtained with Kaolin. Conclusively, the better catalytic performance could be observed with Kaolin than that of using other catalysts when the reaction temperature increased.

On Crystallization of Hadong Kaolin Granulated Cylindrically Treated with Aqueous Sodium Hydroxide Solution (원주형으로 성형된 하동고령토의 수산화나트륨 수용액 처리에 의한 결정의 변화)

  • 김면섭
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.1
    • /
    • pp.21-27
    • /
    • 1978
  • Hadong Kaolin (Halloysite) was granulated cylindrically and treated with 1N aqueous sodium hydroxide solution for 6-48 hrs at 60-10$0^{\circ}C$. The crystalling structure of surface of the products was studied by X-ray powder diffraction method. The reaction rate of halloysite to sodium A zeolite showed a gradual decrease from surface to inner layer. At the surface layer, the reaction mechanism was observed as first order consecutive reaction as follows: halloysitelongrightarrowamorphous aluminosilicatelongrightarrowsodium A zeolitelongrightarrowhydroxysodalite By applying the above reaction mechanism, the rate constants and activation energies was measured.

  • PDF

Effect of Meta Kaolin addition to Activation of waste concrete sludge

  • 황규홍;김재준;연상흠
    • Cement Symposium
    • /
    • no.32
    • /
    • pp.217-221
    • /
    • 2005
  • The utilization of calcined clay, in the form of meta kaolin, as a pozzolanic for mortar and concrete has received considerable attention in recent years. so, the influence of waste concrete sludge and meta kaolin on cement concrete strength has been stud

  • PDF

Development of the inorganic which uses the Fly-ash and Meta-kaolin (플라이애쉬와 메타카올린을 사용한 무기결합재의 개발)

  • Jung, Suk-Jo;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.433-436
    • /
    • 2005
  • The Fly-ash makes an Alumino-silicate gel when it mixes an alkali or a silicate solution. This Alumino-silicate gel is produced to the activation of an alkali silicate. And this act to the binder and makes a combine of particles. This study involved mechanical strengths of an Alumino-silicate Gel based the Fly-ash with an alkali solution. NaOH, KOH were utilized to an alkali solution. The alkali solution concentration was varied from 6 to 12M and the some added also the Meta-kaolin, Waterglass so that it made high the mechanical performance. Based on the experimental result, the compressive strengths increased as the quantity of the Meta-kaolin increased. And a mechanical strengths appeared according to the concentration of an alkali solution so that it was different. XRD, FT-IR have been used to characterize mechanical performance.

  • PDF

High Temperature Properties of Fire Protection Materials Using Fly Ash and Meta-Kaolin (Fly Ash 및 Meta-Kaolin을 활용한 내화성 마감재의 고온특성)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu;Do, Jeong-Yun
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.3
    • /
    • pp.223-231
    • /
    • 2010
  • The serious issue of tall building is to ensure the fire-resistance of high strength concrete. The fire resistant finishing method is necessarily essential in order to satisfy the fire resistance time of 3 h required by the law. The fire resistant finishing method is installed by applying a fire resistant material as a method of shotcrete or a fire resistant board to high strength concrete surface. This method can reduce the temperature increase of the reinforcement embedded in high strength concrete at high temperature due to the installation thickness control. This study is interested in identifying the effectiveness of inorganic alumino-silicate compounds including the inorganic admixture such as fly ash and meta-kaolin as the fire resistant finishing materials through the analysis of fire resistance and components properties at high temperature. The study results show that the fire resistant finishing material composed of fly ash and meta-kaolin has the thermal stability of the slight decrease of compressive strength at high temperature. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction by the reason of the thermal analysis result not showing the decomposition of calcium hydrate. Inorganic compounds composed of fly ash and meta-kaolin is evaluated to be very effective as the fire resistance material for finishing to protect the concrete substrate by the reason of those simplicity in both application and manufacture. The additional study about the adhesion in the interface with concrete substrate is necessary for the purpose of the practical application.

Reactive microglia and mitochondrial unfolded protein response following ventriculomegaly and behavior defects in kaolin-induced hydrocephalus

  • Zhu, Jiebo;Lee, Min Joung;Chang, Hee Jin;Ju, Xianshu;Cui, Jianchen;Lee, Yu Lim;Go, Dahyun;Chung, Woosuk;Oh, Eungseok;Heo, Jun Young
    • BMB Reports
    • /
    • v.55 no.4
    • /
    • pp.181-186
    • /
    • 2022
  • Ventriculomegaly induced by the abnormal accumulation of cerebrospinal fluid (CSF) leads to hydrocephalus, which is accompanied by neuroinflammation and mitochondrial oxidative stress. The mitochondrial stress activates mitochondrial unfolded protein response (UPRmt), which is essential for mitochondrial protein homeostasis. However, the association of inflammatory response and UPRmt in the pathogenesis of hydrocephalus is still unclear. To assess their relevance in the pathogenesis of hydrocephalus, we established a kaolin-induced hydrocephalus model in 8-week-old male C57BL/6J mice and evaluated it over time. We found that kaolin-injected mice showed prominent ventricular dilation, motor behavior defects at the 3-day, followed by the activation of microglia and UPRmt in the motor cortex at the 5-day. In addition, PARP-1/NF-κB signaling and apoptotic cell death appeared at the 5-day. Taken together, our findings demonstrate that activation of microglia and UPRmt occurs after hydrocephalic ventricular expansion and behavioral abnormalities which could be lead to apoptotic neuronal cell death, providing a new perspective on the pathogenic mechanism of hydrocephalus.

Kinetics of Thermal Dehydration of Ha-dong Kaolin (하동카오린의 열분해속도에 관한 연구)

  • 박희찬;손명모
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.1
    • /
    • pp.35-40
    • /
    • 1981
  • The kinetics of the dehydration of Ha-dong kaolin was studied isothermally at various temperatures. Dehydration rate was measured by thermogravimetry method in the temperature range of 440~50$0^{\circ}C$ and the particle size range of 170~325mesh. The general equation f($\alpha$)=kt, where $\alpha$ is the fraction reacted in the time and the function f($\alpha$) depends on the reaction mechanism, was applied to this reaction. The function, f($\alpha$) was obtained by application of reduced-time plot and plot of lnln (1-$\alpha$) vs. ln (time), and expressed as (1-$\alpha$) ln (1-$\alpha$)+$\alpha$=kt. The dehydration followed the diffusion-controlled reaction model and gave activation energy of 30Kcal/mole.

  • PDF