• Title/Summary/Keyword: kWh cost

Search Result 109, Processing Time 0.022 seconds

Analysis for External Cost of Nuclear Power Focusing on Additional Safety and Accident Risk Costs (추가안전대책비용, 사고위험대응비용의 외부비용을 반영한 원전비용 추정 연구)

  • Kim, Yoon Kyung;Cho, Sung-Jin
    • Environmental and Resource Economics Review
    • /
    • v.22 no.2
    • /
    • pp.367-391
    • /
    • 2013
  • After the Fukushima nuclear accident, the external costs of generating electricity from nuclear power plants such as additional safety compliance costs and possible accident risk action costs have gained increasing attention from the public, policy-makers and politicians. Consequently, estimates of the external costs of nuclear power are very deliberate issue that is at the center of the controversy in Korea. In this paper, we try to calculate the external costs associated with the safety of the nuclear power plants, particularly focusing on additional safety compliance costs and possible accident risk action costs. To estimate the possible accident risk action costs, we adopt the damages expectation approach that is very similar way from the external cost calculation of Japanese government after the Fukushima accident. In addition, to estimate additional safety compliance costs, we apply the levelized cost of generation method. Furthermore, we perform the sensitivity analysis to examine how much these social costs increase the electricity price rate. Estimation results of the additional security measure cost is 0.53Won/kWh ~ 0.80Won/kWh depending on the capacity factor, giving little change on the nuclear power generation cost. The estimates of possible accident risk action costs could be in the wide range depending on the different damages of the nuclear power accident, probability of the severe nuclear power accident and the capacity factor. The preliminary results show that it is 0.0025Won/kWh ~ 26.4188Won/kWh. After including those two external costs on the generation cost of a nuclear power plant, increasing rate of electricity price is 0.001%~10.0563% under the capacity factor from 70% to 90%. This paper tries to examine the external costs of nuclear power plants, so as to include it into the generation cost and the electricity price. This paper suggests one of the methodologies that we might internalize the nuclear power generations' external cost, including it into the internal generation cost.

Economic Analysis of Renewable Heat Energy: Levelized Cost of Heat (LCOH) (재생열에너지 경제성 분석: 균등화열생산비용(LCOH))

  • Jaeseok Lee;Ilhyun Cho
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.52-60
    • /
    • 2024
  • This study conducted an economic analysis of renewable heat energy by estimating the levelized cost of heat production (LCOH) of ST and GSHP and comparing it with the cost of alternative fuels. The LCOH of ST ranged from 396.8 KRW/kWh to 578.7 KRW/kWh (small-scale), 270.3 KRW/kWh to 393.3 KRW/kWh (large-scale), and 156.3 KRW/kWh to 220.7 KRW/kWh for GSHP. The economic feasibility of ST and GSHP was analyzed by comparing the calculated LCOH and the fuel costs such as gas and kerosene prices. Moreover, scenario analyses were conducted for installation subsidies under the current system to examine the changes in the economics of renewable thermal energy.

NUCLEAR FUEL CYCLE COST ESTIMATION AND SENSITIVITY ANALYSIS OF UNIT COSTS ON THE BASIS OF AN EQUILIBRIUM MODEL

  • KIM, S.K.;KO, W.I.;YOUN, S.R.;GAO, R.X.
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.306-314
    • /
    • 2015
  • This paper examines the difference in the value of the nuclear fuel cycle cost calculated by the deterministic and probabilistic methods on the basis of an equilibrium model. Calculating using the deterministic method, the direct disposal cost and Pyro-SFR (sodium-cooled fast reactor) nuclear fuel cycle cost, including the reactor cost, were found to be 66.41 mills/kWh and 77.82 mills/kWh, respectively (1 mill = one thousand of a dollar, i.e., $10^{-3}$ $). This is because the cost of SFR is considerably expensive. Calculating again using the probabilistic method, however, the direct disposal cost and Pyro-SFR nuclear fuel cycle cost, excluding the reactor cost, were found be 7.47 mills/kWh and 6.40 mills/kWh, respectively, on the basis of the most likely value. This is because the nuclear fuel cycle cost is significantly affected by the standard deviation and the mean of the unit cost that includes uncertainty. Thus, it is judged that not only the deterministic method, but also the probabilistic method, would also be necessary to evaluate the nuclear fuel cycle cost. By analyzing the sensitivity of the unit cost in each phase of the nuclear fuel cycle, it was found that the uranium unit price is the most influential factor in determining nuclear fuel cycle costs.

A Research on the Economic Feasibility of Korean Nuclear Power under the Condition of Social Acceptance after Fukushima Accident (후쿠시마원전사고 이후 원전 경제성과 안전성(사회적 수용성)의 최적점 연구)

  • Kim, Dong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.3
    • /
    • pp.207-212
    • /
    • 2013
  • Since the Fukushima nuclear power plant accident in March 2011, critical views on the increase in operation of nuclear power plants including the safety and the economic feasibility thereof have been expanding across the world. In these circumstances, we are to find out solutions to the controversial questions on whether nuclear power plants are economically more feasible than other energy sources, while the safety thereof is fully maintained. Thereby, nuclear power plants will play a key role as a sustainable energy source in the future as well as at present. To measure the social safety level that Korean people are actually feeling after the Fukushima accident, a method of cost-benefit analysis called the Contingent Valuation Method(CVM) was used, whereby we wanted to estimate the amount of expenses the general public would be willing to pay for the safety based on their acceptance rather than the social safety. As a result of calculating the trade-off value of the economic feasibility versus the safety in nuclear power plants through the survey thereon, it caused the nuclear power generation cost to be increased by 4.75 won/kWh. Reflecting this on the current power generation cost of 39.11 won/kWh would increase the cost to 43.86 won/kWh. It is thought that this potential cost is still more competitive than the coal-fired power generation cost of 67 won/kWh. This result will be available as a basic data for the 2nd Energy Basic Plan to be drawn up this year, presenting policy implications at the same time.

Power Generation Cost Comparison of Nuclear and Coal Power Plants in Year 2001 under Future Korean Environmental Regulations -Sensitivity and Uncertainty Analysis- (미래의 한국의 환경규제여건에 따른 2001년도의 원자력과 석탄화력 발전단가비교 -민감도와 불확실도 분석-)

  • Lee, Byong-Whi;Oh, Sung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.18-31
    • /
    • 1989
  • To analyze the impact of air pollution control on electricity generation cost, a computer program was developed. POGEN calculates levelized discounted power generation cost including additional air pollution control cost for coal power plant. Pollution subprogram calculates total capital and variable costs using governing equations for flue gas control. The costs are used as additional input for levelized discounted power generation cost subprogram. Pollution output for Rue Gas Desulphurization direct cost was verified using published cost data of well experienced industrialized countries. The power generation costs for the year 2001 were estimated by POGEN for three different regulatory scenarios imposed on coal power plant, and by levelized discounted power generation cost subprogram for nuclear power. Because of uncertainty expected in input variables for future plants, sensitivity and uncertainty analysis were made to check the importance and uncertainty propagation of the input variables using Latin Hypercube Sampling and Multiple Least Square method. Most sensitive parameter for levelized discounted power generation cost is discount rate for both nuclear and coal. The control cost for flue gas alone reaches additional 9-11 mills/kWh with standard deviation less than 1.3 mills/kWh. This cost will be nearly 20% of power generation cost and 40% of one GW capacity coal power plant investment cost. With 90% confidence, the generation cost of nuclear power plant will be 32.6-51.9 mills/kWh, and for the coal power plant it will be 45.5-50.5 mills/kWh. Nuclear is favorable with 95% confidence under stringent future regulatory requirement in Korea.

  • PDF

Calculation of ESS Capacity of Industrial Customer through Economic Analysis (경제성 분석을 통한 산업용 수용가의 ESS 설치 용량 산정)

  • Hong, Jong-Seok;Chai, Hui-Seok;Moon, Jong-Fil
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.273-276
    • /
    • 2015
  • In this paper, ESS capacity installed in industrial customer is calculated using economic analysis. To do this, electric charge for industrial customer is analyzed and power management system(PMS) of ESS is selected. Reduction of kW cost and kWh cost are set to 'benefit' according to operation of ESS. Also, installation cost and maintenance cost of ESS are set to 'cost'. Proper ESS capacity is determined as a result of benefit-to-cost(B/C) analysis according to the variation of ESS installation cost. In case study, B/C is analyzed for the specific industrial customer and minimum capacity of ESS to make a profit are proposed for the customer.

Electricity Cost Variations subject to Nuclear and Renewable Power Portions (원자력 및 신재생에너지 발전비율에 따른 전력단가의 변화)

  • Ko Sang-Hyuk;Chung Bum-Jin
    • Journal of Energy Engineering
    • /
    • v.15 no.1 s.45
    • /
    • pp.14-22
    • /
    • 2006
  • Various pros and cons are raised as to the nuclear and renewable power portions. In order to generate scientific, objective, and comparative data, this study reviewed energy policies of some countries and derived 34 possible energy mix scenarios depending on the nuclear portion, the renewable portion and the make-up power sources. For each scenario, the unit electricity cost was calculated using the BLMP (Base Load Marginal Price) and SMP (System Marginal Price) methodology, which is currently adopted in Korean electricity market. The unit electricity cost for the current energy mix was 22.18 Won/kWh and those fir other scenarios spreaded from 19.74 to 164.07 Won/kWh excluding the transmission costs and profits of the electric utility companies. Generally, the increased nuclear power portion leads reduction in the unit electricity cost while the trend is reversed in the renewable power portion. Notable observation is that when the renewable power portion exceeds 20%, as the scenario cannot enjoy the benefit of cheap base load, the unit electricity cost at low demand time zone is increased.

A Pre-Feasibility Test of Introducing Renewable Energy Hybrid Systems -Case Studies for 3 Off-Grid Islands- (도서지역 신·재생복합 전력시스템 보급 타당성 분석 -3개 도서지역 분석결과-)

  • Jang, HaNa;Kim, Suduk
    • Environmental and Resource Economics Review
    • /
    • v.15 no.4
    • /
    • pp.693-712
    • /
    • 2006
  • A pre-feasibility test is done for renewable energy hybrid power systems at off~grid islands in which the current power supply is provided only by diesel generation. We apply Homer (Hybrid Optimization Model for Electric Renewables) which was developed by the National Renewable Energy Laboratory (NREL) for the analysis to identify the cost-minimizing combination of power generating facilities for the given load profiles. Chuja-Do, Geomun-Do and Youngsan-Do have been selected for our analysis considering the wind resources data of the Korea Institute of Energy Research (KIER). Information on wind speed, solar radiation and temperature is also used for the analysis. System component cost information from overseas market has been used due to the lack of domestic information. Site specific Load profile for electricity demand for those islands are reconstructed based on the partial survey results obtained form other sources. The LCOE of the least cost hybrid power systems for Chuja-Do, Geomun-Do and Youngsan-Do are $0.278/kWh, $0.234/kWh and $0.353/kWh, respectively Considering the fact that diesel generation is being subsidized at the price of $0.300/kWh by the government, first 2 cases are economically feasible for the introduction of renewable energy hybrid systems to those islands. But the third case of Youngsan-Do does not meet the criteria. The basic differences of these pre-feasibility test results are from the differences of the site specific renewable energy conditions, especially wind resources. In summary, promoting hybrid systems in the off-grid remote island should be based on the economic feasibility test results. Not all the off-grid islands are feasible for introducing this renewable energy hybrid system.

  • PDF

A Studies on Wallpaper Making Using Hanji(II) - Making and Properties of Hanji Wallpaper - (한지벽지 제조에 관한 연구(II) - 한지벽지 제조 및 특성 -)

  • Yoon, Seung-Lak;Jo, Hyun-Jin;Park, Sang-Bum;Kim, Jae-Kyeong;Kim, Sa-Ick;Kim, Hyo-Joo;Lee, Moon-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.17-21
    • /
    • 1997
  • This study was carried out to develop the manufacturing technique of Korean paper(Hanji) and find out new uses of machine-made Hanji produced on a a large scale by paper machine. Six kinds of Hanji were made and laminated with backpaper by acryl-based or vinyl acetate ethylene-based adhesive. Six kinds of wallpapers were made such as WH 1, WH 2-1, WH 2-2, WH 3-1, WH 3-2 and WH 4. Physical properties and quality test on the wallpapers were examined. Physical strength of the wallpapers was better than each strength of the Hanji and backpaper. It might be a roll of adhesive. And so, Production cost of the Hanji could be brought down if the Hanji was made thin to get strength not enough to cut during lamination of two papers(Hanji and backpaper). Hanji wallpapers of WH 3-1 and WH 4 are lower than a standard in sunlight resistance and WH 1 is in properties of opacity. WH 2-1, WH 2-2 and WH 3-2 were better than Korean standard in some quality tests. WH 2-2 and WH 3-2 were superior to other wallpapers as a whole. About, twenty kinds of wallpapers with surface treatment, are now being produced on the basis of these two types of wallpapers.

  • PDF

Status and Feasibility Study on Tidal Energy Technology (조력에너지 기술 현황 및 경제성 분석)

  • Cho, Young-Beom;Wee, Jung-Ho;Kim, Jeong-In
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.103-115
    • /
    • 2010
  • Currently, many nations in the world make a strong effort to exploit the new and renewable energy. Tidal energy is the constant and regular power sources with higher and more stable quality compared to other renewable sources. The present paper reports the status of tidal energy analyzing its latest technology and development. In addition, a feasibility study on two types of tidal power plant(TPP) systems is conducted based on many assumptions, conditions and data involved in the Korea environment. The Sihwa and Uldolmok TPP are considered as the reference of tidal barrage(TB) and tidal in stream energy conversion(TISEC) type, respectively. While TB technology is currently mature and reliable, there still remain many environmental issues. Whereas, TISEC is recently received more attention due to its environmental friendly aspect. Therefore, the TISEC is believed to be very promising technology as the TPP. The unit electricity generation cost of Sihwa TPP is approximately 67.3 KRW/kWh. However, considering additional cost of Sihwa lake construction, it increases to 254 KRW/kWh. In Uldolmok, the unit electricity generation cost is calculated to be about 400 KRW/kWh, which is even higher than that of Sihwa TPP. This is ascribed to high cost of TISEC device and construction cost due to its technological infancy as well as relatively small power capacity. Nevertheless, the TISEC technology would be substantially developed in the future due to its many advantageous features.