• Title/Summary/Keyword: kNN classifier

Search Result 101, Processing Time 0.025 seconds

eCRM Agent System for Articles Automatic Classification System based on Naive Bayesian Classifier (나이브 베이지안 분류기를 이용한 게시물 자동 분류를 위한 eCRM 에이전트 시스템)

  • Choi, Jung-Min;Lee, Byoung-Soo
    • Journal of IKEEE
    • /
    • v.8 no.2 s.15
    • /
    • pp.216-223
    • /
    • 2004
  • The customer's bulletin board is the important channel to get opinions from customers directly. The effective management of the bulletin board for the customer improves the reliance by providing the best replies and by accepting opinions of the customer and furthermore, that can raise the customer's reliance of the whole shopping mall is the important eCRM method. But, the present mostly customer's bulletin board is been replied without any classifying about many kinds of question. Consequently, The shopping mall should do systematic management of the best professional reply about many kinds of question. In order to resolve this problem, we implement a classifier called Naive Bayesian classifier is classified automatically bulletin board for eCRM of shopping mall.

  • PDF

Hand Gesture Interface Using Mobile Camera Devices (모바일 카메라 기기를 이용한 손 제스처 인터페이스)

  • Lee, Chan-Su;Chun, Sung-Yong;Sohn, Myoung-Gyu;Lee, Sang-Heon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.5
    • /
    • pp.621-625
    • /
    • 2010
  • This paper presents a hand motion tracking method for hand gesture interface using a camera in mobile devices such as a smart phone and PDA. When a camera moves according to the hand gesture of the user, global optical flows are generated. Therefore, robust hand movement estimation is possible by considering dominant optical flow based on histogram analysis of the motion direction. A continuous hand gesture is segmented into unit gestures by motion state estimation using motion phase, which is determined by velocity and acceleration of the estimated hand motion. Feature vectors are extracted during movement states and hand gestures are recognized at the end state of each gesture. Support vector machine (SVM), k-nearest neighborhood classifier, and normal Bayes classifier are used for classification. SVM shows 82% recognition rate for 14 hand gestures.

ART2 Neural Network Applications for Diagnosis of Sensor Fault in the Indoor Gas Monitoring System

  • Lee, In-Soo;Cho, Jung-Hwan;Shim, Chang-Hyun;Lee, Duk-Dong;Jeon, Gi-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1727-1731
    • /
    • 2004
  • We propose an ART2 neural network-based fault diagnosis method to diagnose of sensor in the gas monitoring system. In the proposed method, using thermal modulation of operating temperature of sensor, the signal patterns are extracted from the voltage of load resistance. Also, fault classifier by ART2 NN (adaptive resonance theory 2 neural network) with uneven vigilance parameters is used for fault isolation. The performances of the proposed fault diagnosis method are shown by simulation results using real data obtained from the gas monitoring system.

  • PDF

Automated Classification of Audio Genre using Sequential Forward Selection Method

  • Lee Jong Hak;Yoon Won lung;Lee Kang Kyu;Park Kyu Sik
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.768-771
    • /
    • 2004
  • In this paper, we propose a content-based audio genre classification algorithm that automatically classifies the query audio into five genres such as Classic, Hiphop, Jazz, Rock, Speech using digital signal processing approach. From the 20 second query audio file, 54 dimensional feature vectors, including Spectral Centroid, Rolloff, Flux, LPC, MFCC, is extracted from each query audio. For the classification algorithm, k-NN, Gaussian, GMM classifier is used. In order to choose optimum features from the 54 dimension feature vectors, SFS (Sequential Forward Selection) method is applied to draw 10 dimension optimum features and these are used for the genre classification algorithm. From the experimental result, we verify the superior performance of the SFS method that provides near $90{\%}$ success rate for the genre classification which means $10{\%}$-$20{\%}$ improvements over the previous methods

  • PDF

Fingerprint Classification using Singular Points and Gabor filter (특이점과 Gabor 필터를 이용한 효과적인 지문 이미지 분류)

  • Lee, Min-Seob;Lee, Chul-Heui
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.321-324
    • /
    • 2002
  • In this paper, we introduce a new approach to fingerprint classification based on both singular points and gabor features. We find singular points of fingerprint image by using squared direction field and Poincare index. Then, the input fingerprint image can be classified into one of 5 classes using the number of singular points and their location. However, it is often impossible to classify the fingerprint image because the numbers and the position of the singular points are not correct due to noise. In this case Gabor features are extracted from unclassified images using Gator filter and they are classified by using k-NN classifier. This method has been tested on the NIST-4 database. The experimental results show that the proposed method is reliable.

  • PDF

Performance Comparison of Feature Parameters and Classifiers for Speech/Music Discrimination (음성/음악 판별을 위한 특징 파라미터와 분류기의 성능비교)

  • Kim Hyung Soon;Kim Su Mi
    • MALSORI
    • /
    • no.46
    • /
    • pp.37-50
    • /
    • 2003
  • In this paper, we evaluate and compare the performance of speech/music discrimination based on various feature parameters and classifiers. As for feature parameters, we consider High Zero Crossing Rate Ratio (HZCRR), Low Short Time Energy Ratio (LSTER), Spectral Flux (SF), Line Spectral Pair (LSP) distance, entropy and dynamism. We also examine three classifiers: k Nearest Neighbor (k-NN), Gaussian Mixure Model (GMM), and Hidden Markov Model (HMM). According to our experiments, LSP distance and phoneme-recognizer-based feature set (entropy and dunamism) show good performance, while performance differences due to different classifiers are not significant. When all the six feature parameters are employed, average speech/music discrimination accuracy up to 96.6% is achieved.

  • PDF

An Experimental Study on Categorization of Web Documents Using an Ensemble Classifier (복합 분류기를 이용한 웹 문서 범주화에 관한 실험적 연구)

  • 이혜원;정영미
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2003.08a
    • /
    • pp.73-82
    • /
    • 2003
  • 본 연구에서는 웹 문서를 분류하기 위해 문서로부터 다양한 자질을 추출하고, 두 가지의 분류기를 통해 여러 개의 분류 예측치를 구한 다음, 그것들을 하나의 결과물로 통합하는 복합분류기를 사용하였다. 먼저 다양한 자질 집합에 대해 일반적으로 많이 사용되는 kNN(k nearest neighbor) 분류기와 나이브 베이즈(Naive Bayes) 분류기를 사용한 범주화 실험을 수행하고, 실험을 통해 나온 범주 예측치를 통합하는 복합 분류기들의 성능을 비교하였다. 또한 단일 분류기들을 통해 나온 모든 범주 예측치를 통합하는 과정을 수행하여, 단일 분류기만을 사용할 경우와 복합 분류기를 사용할 경우를 비교해 더 좋은 성능을 나타내는 분류기를 밝히고자 한다.

  • PDF

Morphological Variation Classification of Red Blood Cells using Neural Network Model in the Peripheral Blood Images (말초혈액영상에서 신경망 모델을 이용한 적혈구의 형태학적 변이 분류)

  • Kim, Gyeong-Su;Kim, Pan-Gu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.10
    • /
    • pp.2707-2715
    • /
    • 1999
  • Recently, there have been researches to automate processing and analysing images in the medical field using image processing technique, a fast communication network, and high performance hardware. In this paper, we propose a system to be able to analyze morphological abnormality of red-blood cells for peripheral blood image using image processing techniques. To do this, we segment red-blood cells in the blood image acquired from microscope with CCD camera and then extract UNL fourier features to classify them into 15 classes. We reduce the number of multi-variate features using PCA to construct a more efficient classifier. Our system has the best performance in recognition rate, compared with two other algorithms, LVQ3 and k-NN. So, we show that it can be applied to a pathological guided system.

  • PDF

The Effect of the Quality of Pre-Assigned Subject Categories on the Text Categorization Performance (학습문헌집합에 기 부여된 범주의 정확성과 문헌 범주화 성능)

  • Shim, Kyung;Chung, Young-Mee
    • Journal of the Korean Society for information Management
    • /
    • v.23 no.2
    • /
    • pp.265-285
    • /
    • 2006
  • In text categorization a certain level of correctness of labels assigned to training documents is assumed without solid knowledge on that of real-world collections. Our research attempts to explore the quality of pre-assigned subject categories in a real-world collection, and to identify the relationship between the quality of category assignment in training set and text categorization performance. Particularly, we are interested in to what extent the performance can be improved by enhancing the quality (i.e., correctness) of category assignment in training documents. A collection of 1,150 abstracts in computer science is re-classified by an expert group, and divided into 907 training documents and 227 test documents (15 duplicates are removed). The performances of before and after re-classification groups, called Initial set and Recat-1/Recat-2 sets respectively, are compared using a kNN classifier. The average correctness of subject categories in the Initial set is 16%, and the categorization performance with the Initial set shows 17% in $F_1$ value. On the other hand, the Recat-1 set scores $F_1$ value of 61%, which is 3.6 times higher than that of the Initial set.

Adaptive Scene Classification based on Semantic Concepts and Edge Detection (시멘틱개념과 에지탐지 기반의 적응형 이미지 분류기법)

  • Jamil, Nuraini;Ahmed, Shohel;Kim, Kang-Seok;Kang, Sang-Jil
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.2
    • /
    • pp.1-13
    • /
    • 2009
  • Scene classification and concept-based procedures have been the great interest for image categorization applications for large database. Knowing the category to which scene belongs, we can filter out uninterested images when we try to search a specific scene category such as beach, mountain, forest and field from database. In this paper, we propose an adaptive segmentation method for real-world natural scene classification based on a semantic modeling. Semantic modeling stands for the classification of sub-regions into semantic concepts such as grass, water and sky. Our adaptive segmentation method utilizes the edge detection to split an image into sub-regions. Frequency of occurrences of these semantic concepts represents the information of the image and classifies it to the scene categories. K-Nearest Neighbor (k-NN) algorithm is also applied as a classifier. The empirical results demonstrate that the proposed adaptive segmentation method outperforms the Vogel and Schiele's method in terms of accuracy.

  • PDF