Although several methods have been used to assess the pain levels, few practical methods for classifying presence or absence of the pain using pattern classifiers have been suggested. The aim of this study is to design an pattern classifier that classifies the presence or absence of the pain using electrocardiogram (ECG). We measured the ECG signal from 10 subjects with the painless state and the pain state(Induced by mechanical stimulation). The 10 features of heart rate variability (HRV) were extracted from ECG - MeanRRI, SDNN, rMSSD, NN50, pNN50 in the time domain; VLF, LF, HF, Total Power, LF/HF in the frequency domain; and we used the features as input vector of the pattern classifier's artificial neural network (ANN) / support vector machine (SVM) for classifying the presence or absence of the pain. The study results showed that the classifiers using ANN / SVM could classify the presence or absence of the pain with accuracies of 81.58% / 81.84%. The proposed classifiers can be applied to the objective assessment of pain level.
원자력 발전소는 안정성 및 신뢰성 확보가 가장 중요하므로 고장의 감지 및 진단 시스템의 개발은 원전 자체가 구축하고 있: 다중의 하드웨어 중첩도(hardware redundancy)에도 불구하고 가장 중요한 문제로 취급되고 있다. 본 논문에서는 원저 PWR 증기발생기에서 발생한 고장을 진단하기 위한 알고리듬의 개발을 위해 시스템에서 발생한 고장을 감지하고 분류할 수 있는 ART2 시경회로망 기반 고장진단방법을 제안한다. 고장진단시스템은 발생한 고장을 감지하기 위한 고장감지부, 변화된 시스템파라미터를 추정하기 위한 파라미터 추정부 및 발생한 고장의 종류를 알아내기 위한 고장분류부로 구성된다. 고장분류부는 여러 경계인수를 갖는 ART2(adaptive resonance theory 2) 신경회로망을 이용한 고장분류기로 구성된다. 제안한 고장진단 알고리듬을 증기발생기의 고장진단문제에 적용하여 성능을 확인하였다.
고령화 사회로 진입하면서 노인들은 노화과정에 의한 보행능력의 감소 및 근력 약화와 같은 신체적 변화로 인해 잦은 낙상을 경험한다. 이에 따라 낙상 사고를 감지하는 연구가 활발히 진행되고 있다. 낙상은 사전 예방도 중요하지만 사고 발생 후의 신속한 대처도 중요하다. 낙상을 감지하고 의료진에게 즉시 낙상정보를 제공하여 후속적 조치를 취하는 것은 사고 후 대처의 핵심이다. 본 논문에서는 스마트폰 환경에서 사용자의 낙상 후 방향을 판별하기 위해 두 가지 센서 데이터의 특정 값들을 추출하였으며, 이에 5 가지 기계학습 알고리즘을 적용하였다. 사용자는 스마트폰을 착용한 상태로 전후좌우 4 방향 낙상 실험을 진행하며 스마트폰 내에 내장된 3 축 가속도 센서와 3 축 자이로 센서값을 측정한다. 피험자 11 명을 대상으로 낙상 실험 결과, 5 가지의 분류기 중 k-NN에서 98.6%의 인식률을 나타내었다. 뽑아낸 특징 값과 분류 알고리즘은 낙상의 방향 검출에 유용한 것으로 판단된다.
본 논문에서는 컬러와 패턴 정보를 이용하여 텍스타일 영상에 포함된 감성을 자동으로 인식할 수 있는 방법을 제안한다. 이때, 감성을 표현하기 위해 고바야시의 10가지 감성 그룹 - {romantic, clear, natural, casual, elegant chic, dynamic, classic, dandy, modern}- 을 이용한다. 제안된 시스템은 특징 추출과 분류로 구성된다. 특징 추출 단계에서는 주관적인 감성을 물리적인 영상 특징으로 표현하기 위해 텍스타일을 구성하는 대표 컬러와 패턴을 추출 한다. 이 때 대표 컬러를 추출하기 위해서 양자화 기법을 이용하고, 패턴정보를 표현하기 위해서는 웨이블릿 변환 후의 통계적인 정보를 이용한다 추출된 컬러와 패턴 특징은 신경망을 이용한 분류기의 입력으로 사용되고, 분류기를 통해 입력 텍스타일이 임의의 감성을 가지는지 여부가 결정된다. 제안된 감성인식 방법의 효율성을 증명하기 위해서 인위적인 도메인, 패션 도메인, 인테리어 도메인에서 얻어진 389장의 텍스타일 영상에서 실험하였다. 다양한 도메인의 영상에 대해 사용된 결과 제안된 방법은 100%의 정확도와 99%의 재현율을 보였다. 이러한 실험 결과는 제안된 감성인식 방법이 다양한 텍스타일 관련 산업분야에 일반화되어 사용될 수 있음을 보여주었다.
이 연구의 목적은 사건을 연구대상으로 하는 사건트래킹 기법이 과연 최신 사건 정보를 검색함에 있어 기존의 정보필터링 기법보다 성능이 우수한가를 살펴보는 데 있다. 따라서 이 연구에서는 특정 사건에 관한 최신 기사를 보다 효과적으로 검색하여 제공하는 기법을 찾아내기 위하여 kNN(k-Nearest Neighbors) 분류기를 응용한 사건트래킹 기법과 질의기반 정보필터링 기법을 사용하여 사건검색 실험을 수행한 후 두 기법의 검색 성능을 비교하였다. 사건트래킹 실험은 초기의 고정 학습문서 집합을 사용한 사건트래킹과 트래킹 과정에서 변화하는 동적 학습문서 집합을 사용한 사건트래킹의 두 가지 방법으로 수행되었다. 정보필터링 실험도 초기질의를 사용한 정보 필터링과 필터링 과정에서 계속 수정되는 질의를 사용한 정보필터링의 두 가지 방법으로 수행되었다. 실험 결과 사건트래킹 기법에서는 고정 학습문서 집합을 사용한 경우가 동적 학습문서 집합을 사용한 경우보다 더 우수한 성능을 보였으며, 정보필터링 기법에서는 초기질의를 사용한 경우가 수정질의를 사용한 경우보다 더 좋은 성능을 보였다. 또한 고정 학습문서 집합을 사용한 사건트래킹과 초기질의를 사용한 정보필터링을 비교한 결과 정보필터링 기법이 사건트래킹 기법에 비해 더 좋은 사건검색 성능을 보이는 것으로 나타났다.
본 논문은 이동전화 (Cellular phone)를 통해 실시간으로 습득된 음성으로부터 사람의 감성 상태를 평상 혹은 화남으로 인식할 수 있는 음성 감성인식 시스템을 제안하였다. 일반적으로 이동전화를 통해 수신된 음성은 화자의 환경 잡음과 네트워크 잡음을 포함하고 있어 음성 신호의 감성특정을 왜곡하게 되고 이로 인해 인식 시스템에 심각한 성능저하를 초래하게 된다. 본 논문에서는 이러한 잡음 영향을 최소화하기 위해 비교적 단순한 구조와 적은 연산량을 가진 MA (Moving Average) 필터를 감성 특정벡터에 적용해서 잡음에 의한 시스템 성능저하를 최소화하였다. 또한 특정벡터를 최적화할 수 있는 SFS (Sequential Forward Selection) 기법을 사용해서 제안 감성인식 시스템의 성능을 한층 더 안 정화시켰으며 감성 패턴 분류기로는 k-NN과 SVM을 비교하였다. 실험 결과 제안 시스템은 이동통신 잡음 환경에서 약 86.5%의 높은 인식률을 달성할 수 있어 향후 고객 센터 (Call-center) 등에 유용하게 사용될 수 있을 것으로 기대된다.
본 연구는 신경망에 근거한 패턴매칭 방법을 사용하여 일시적 허혈 에피소드의 자동예측을 다루고 있다. 다층 신경망을 학습하기 위한 알고리즘은 수정된 역전파 알고리즘으로서 이 알고리즘은 학습속도를 향상시키기 위해 뉴런간의 연결계수 뿐만 아니라 뉴런내 비선형 함수의 변수들도 갱신한다. 제안된 방법의 성능은 MIT/BIH long-term 데이터베이스의 심전도(ECG) 신호를 사용하여 평가하였다. 총 15 레코드(237 허혈 에피소드)에 대한 실험결과에 의하면 허혈 에피소드 예측의 평균 sensitivity와 specificity 각각 85.71%와 71.11%이다. 또한 제안된 방법은 실제 허혈 에피소드로부터 평균 45.53초 이전에 예측하였다. 이러한 결과는 패턴매칭 분류기로서의 신경망 접근방법이 일시적 허혈 에피소드예측에 유용한 도구로 사용될 수 있음을 의미한다.
본 논문은 신경망 (neural network: NN)과 mean-shift알고리즘을 이용하여 복잡한 배경에서 사용자의 눈을 정확히 추출하고 추적할 수 있는 눈 추적 시스템을 제안한다. 머리의 움직임에 강건한 시스템을 개발하기 위해서 먼저 피부색 모델과 연결 성분분석을 이용하여 얼굴영역을 추출한다. 그 다음 신경망기반의 텍스처 분류기를 이용하여 얼굴 영역(face region)을 눈 영역(eye region)과 비눈 영역(non-eye region)으로 구분함으로써 눈을 찾는다. 이러한 눈 검출 방법은 안경의 착용 유무에 상관없이 사용자의 눈 영역을 정확히 검출 할 수 있게 한다. 일단 눈 영역이 찾아지면 이후 프레임에서의 눈 영역은 mean-shift알고리즘에 의해 정확하게 추적된다. 제안된 시스템의 효율성을 검증하기 위해서 제안된 시스템은 눈의 움직임을 이용한 인터페이스 시스템에 적용되었고, 이 인터페이스를 이용한 'aliens game'이 구현되었다. 25명의 사용자에 대해 실험한 결과는 제안된 시스템이 보다 편리하고 친숙한 인터페이스로 활용될 수 있다는 것을 보여주었으며, 또한 $320{\times}240$ 크기의 영상을 초당 30프레임의 빠른 속도로 처리함으로써 실시간 시스템에 적용될 수 있음을 보여주었다.
EIS (Electro interstitial scan, 전기체간스캔법)는 전극을 이용해 미세전류를 인체에 인가하고 그에 따른 전기적 반응을 분석하여 생리적인 정보를 얻는 방법으로, 비침습적이고 간단한 검사가 가능하다는 장점이 있다. 특히 당뇨병 진단을 위한 스크린용으로 적합하다는 연구들이 진행되어 왔으나 대부분 진단 원리에 대한 구체적인 논의가 이루어지지 않았다. 본 연구에서는 EIS 방법이 당뇨병 스크리닝 및 임상에 유용하게 활용될 수 있을지 분석해 보기위해 당뇨병 환자와 정상인을 대상으로 EIS 장비의 원 신호인 전압 변동 데이터를 특정경로에서 측정하였다. 전압 신호의 특징점을 추출하고 두 그룹 사이의 AUC (Area under the curve)를 계산한 결과 7개의 변수들이 60% 이상의 분류 정확도를 보였다. 또한 이 변수들을 k-NN 분류기로 학습한 결과, 왼쪽 손에서의 전압 변동 크기를 기준으로 분석했을 때 분류 정확도를 76.2%까지 높일 수 있었다. EIS 기반의 전압신호 분석법으로 비침습적인 당뇨병 스크리닝의 가능성을 보였다.
상품 평가 기준은 상품에 대한 속성, 가치 등을 표현한 지표로써 사용자나 기업이 상품을 측정하고 파악할 수 있게 한다. 기업이 자사 제품에 대한 객관적인 평가와 비교를 수행하기 위해서는 적절한 기준을 선정하는 것이 필수적이다. 이때, 평가 기준은 소비자들이 제품을 실제로 구매 및 사용 후 평가할 때 고려하는 제품의 특징을 반영하여야 한다. 그러나 기존에 사용되던 평가 기준은 제품마다 상이한 소비자의 의견을 반영하지 못하고 있다. 기존 연구에서는 소비자 의견이 반영된 온라인 리뷰를 통해 상품의 특징, 주제를 추출하고 이를 평가기준으로 사용했다. 하지만 여전히 상품과 연관성이 낮은 평가 기준이 추출되거나 부적절한 단어가 정제되지 않는 한계가 있다. 본 연구에서는 이를 극복하기 위해 잠재 디리클레 할당(Latent Dirichlet Allocation, LDA) 기법으로 리뷰로부터 평가 기준 후보군을 추출하고 이를 k-최근접 이웃 접근법(k-Nearest Neighbor Approach, k-NN)을 이용해 정제하는 모델을 개발하고 검증했다. 제시하는 방법은 준비 단계와 추출 단계로 이루어진다. 준비 단계에서는 워드임베딩(Word Embedding) 모델과 평가 기준 후보군을 정제하기 위한 k-NN 분류기를 생성한다. 추출 단계에서는 k-NN 분류기와 언급 비율을 이용해 평가 기준 후보군을 정제하고 최종 결과를 도출한다. 제안 모델의 성능 평가를 위해 명사 빈도 추출 모델, LDA 빈도 추출 모델, 실제 전자상거래 사이트가 제공하는 평가 기준을 세 비교 모델로 선정했다. 세 모델과의 비교를 위해 설문을 진행하고 점수화하여 결과를 검정했다. 30번의 검정 결과 26번의 결과에서 제안 모델이 우수함을 확인했다. 본 연구의 제안 모델은 전자상거래 사이트에서 리뷰 특성을 반영한 상품군 별 차원을 도출하는데 활용될 수 있고 이를 기초로 인사이트 발굴을 위한 리뷰 분석 및 활용에 크게 기여할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.