• 제목/요약/키워드: k-nearest neighbor graph

검색결과 10건 처리시간 0.023초

Balanced Canopy Clustering에 기반한 일반적 k-인접 이웃 그래프 생성 알고리즘 (A Generic Algorithm for k-Nearest Neighbor Graph Construction Based on Balanced Canopy Clustering)

  • 박영기;황혜수;이상구
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권4호
    • /
    • pp.327-332
    • /
    • 2015
  • k-인접 이웃 그래프는 모든 정점에 대한 k-NN 정보를 나타내는 데이터 구조로서, 많은 정보검색 및 추천 시스템에서 k-인접 이웃 그래프를 활용하고 있다. 현재까지 k-인접 이웃 그래프를 생성하는 다양한 방법들이 제안되었지만, 다음의 두 조건을 동시에 만족하는 알고리즘은 제안되지 못했다: (1) 특정유사도 척도를 가정하지 않는다. (2) 정점 또는 차원의 수가 증가하더라도 정확도가 감소하지 않는다. 본 논문에서는 balanced canopy clustering을 이용하여 위 두 조건을 모두 만족하는 k-NN 그래프 생성 알고리즘을 제안한다. 실험 결과, 정점과 차원의 수에 상관없이 기본 알고리즘에 비해 5배 이상 빠르면서 약 92%의 정확도를 유지했다. 본 알고리즘은 새로운 유사도 척도를 사용하거나, 높은 정확도를 보장해야 할 경우 효과적으로 사용될 수 있다.

Robust Similarity Measure for Spectral Clustering Based on Shared Neighbors

  • Ye, Xiucai;Sakurai, Tetsuya
    • ETRI Journal
    • /
    • 제38권3호
    • /
    • pp.540-550
    • /
    • 2016
  • Spectral clustering is a powerful tool for exploratory data analysis. Many existing spectral clustering algorithms typically measure the similarity by using a Gaussian kernel function or an undirected k-nearest neighbor (kNN) graph, which cannot reveal the real clusters when the data are not well separated. In this paper, to improve the spectral clustering, we consider a robust similarity measure based on the shared nearest neighbors in a directed kNN graph. We propose two novel algorithms for spectral clustering: one based on the number of shared nearest neighbors, and one based on their closeness. The proposed algorithms are able to explore the underlying similarity relationships between data points, and are robust to datasets that are not well separated. Moreover, the proposed algorithms have only one parameter, k. We evaluated the proposed algorithms using synthetic and real-world datasets. The experimental results demonstrate that the proposed algorithms not only achieve a good level of performance, they also outperform the traditional spectral clustering algorithms.

MapReduce 환경에서 재그룹핑을 이용한 Locality Sensitive Hashing 기반의 K-Nearest Neighbor 그래프 생성 알고리즘의 개선 (An Improvement in K-NN Graph Construction using re-grouping with Locality Sensitive Hashing on MapReduce)

  • 이인희;오혜성;김형주
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권11호
    • /
    • pp.681-688
    • /
    • 2015
  • k-Nearest Neighbor(k-NN)그래프는 모든 노드에 대한 k-NN 정보를 나타내는 데이터 구조로써, 협업 필터링, 유사도 탐색과 여러 정보검색 및 추천 시스템에서 k-NN그래프를 활용하고 있다. 이러한 장점에도 불구하고 brute-force방법의 k-NN그래프 생성 방법은 $O(n^2)$의 시간복잡도를 갖기 때문에 빅데이터 셋에 대해서는 처리가 곤란하다. 따라서, 고차원, 희소 데이터에 효율적인 Locality Sensitive Hashing 기법을 (key, value)기반의 분산환경인 MapReduce환경에서 사용하여 k-NN그래프를 생성하는 알고리즘이 연구되고 있다. Locality Sensitive Hashing 기법을 사용하여 사용자를 이웃후보 그룹으로 만들고 후보내의 쌍에 대해서만 brute-force하게 유사도를 계산하는 two-stage 방법을 MapReduce환경에서 사용하였다. 특히, 그래프 생성과정 중 유사도 계산하는 부분이 가장 많은 시간이 소요되므로 후보 그룹을 어떻게 만드는 것인지가 중요하다. 기존의 방법은 사이즈가 큰 후보그룹을 방지하는데 한계점이 있다. 본 논문에서는 효율적인 k-NN 그래프 생성을 위하여 사이즈가 큰 후보그룹을 재구성하는 알고리즘을 제시하였다. 실험을 통해 본 논문에서 제안한 알고리즘이 그래프의 정확성, Scan Rate측면에서 좋은 성능을 보임을 확인하였다.

위치 기반 서비스에서 K-anonymity를 보장하는 가중치 근접성 그래프 기반 최근접 질의처리 알고리즘 (A Nearest Neighbor Query Processing Algorithm Supporting K-anonymity Based on Weighted Adjacency Graph in LBS)

  • 장미영;장재우
    • Spatial Information Research
    • /
    • 제20권4호
    • /
    • pp.83-92
    • /
    • 2012
  • 무선 통신 기술 및 GPS(Global Positioning System)등의 발달로 인하여 위치 기반 서비스 (Location-Based Services: LBS)가 크게 발전하는 추세이다. 그러나 위치 기반 서비스를 이용하기 위해 질의 요청자는 자신의 정확한 위치 정보를 위치 기반 서비스 제공자에게 전송해야 한다. 따라서 위치 기반 서비스를 제공하면서 질의 요청자의 위치 정보를 보호하는 것이 중요한 과제이다. 이 문제를 해결하기 위해, 기존 기법은 실제 사용자의 위치를 숨기며 네트워크 사용을 줄일 수 있는 2PASS 기법을 사용하였다. 그러나 이 기법은 실제 사용자 분포를 고려하지 않기 때문에 실제 사용자 위치 보호를 완전히 보장하지 않는다. 따라서 본 논문에서는 K-anonymity를 보장하는 가중치 근접성 그래프 기반 최근접 질의처리 알고리즘을 제안한다. 제안하는 알고리즘은 질의 영역 내 K-anonymity를 보장함으로써 사용자의 위치 정보를 보호할 뿐만 아니라 불필요한 질의 결과 탐색을 줄여 네트워크 효율을 증가시킨다. 마지막으로, 성능평가를 통해 제안하는 기법이 기존 연구에 비해 질의 처리 시간 및 네트워크 효율 측면에서 우수함을 보인다.

Spectral clustering based on the local similarity measure of shared neighbors

  • Cao, Zongqi;Chen, Hongjia;Wang, Xiang
    • ETRI Journal
    • /
    • 제44권5호
    • /
    • pp.769-779
    • /
    • 2022
  • Spectral clustering has become a typical and efficient clustering method used in a variety of applications. The critical step of spectral clustering is the similarity measurement, which largely determines the performance of the spectral clustering method. In this paper, we propose a novel spectral clustering algorithm based on the local similarity measure of shared neighbors. This similarity measurement exploits the local density information between data points based on the weight of the shared neighbors in a directed k-nearest neighbor graph with only one parameter k, that is, the number of nearest neighbors. Numerical experiments on synthetic and real-world datasets demonstrate that our proposed algorithm outperforms other existing spectral clustering algorithms in terms of the clustering performance measured via the normalized mutual information, clustering accuracy, and F-measure. As an example, the proposed method can provide an improvement of 15.82% in the clustering performance for the Soybean dataset.

$L_\infty(L_1)$디루니 삼각분할의 병렬처리 알고리즘 (A Parallel Algorithm for Constructing the Delaunay Triangulation in the$L_\infty(L_1)$ Metric)

  • 위영철
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제28권3호
    • /
    • pp.155-160
    • /
    • 2001
  • 본 논문은 영역별 근접 그래프 (geographic nearest neighbor graph)와 레인지 트리 (range tree)를 이용하여 평면 위의 n 개의 점에 대한 L$_{\infty}$ (L$_1$) 거리 (metric) 상의 디루니 삼각분할 (Delaunay triangulation)을 구축하는 방법을 소개한다. 이 방법은 L$_{\infty}$ (L$_1$) 거리 상에서 디루니 삼각분할에 있는 각 삼각형의 최소한 한 선분이 영역별 근접 그래프에 포함됨을 이용하여 레인지 트리 방법으로 디루니 삼각분할을 구축한다. 본 방법은 0(nlogn)의 순차계산 시간에 L$_{\infty}$ (L$_1$) 디루니 삼각분할을 구축하며, CREW-PRAM (Concurrent Read Exclusive Write Parallel Random Access Machine)에서 0(n)의 프로세서로 0(logn)의 병렬처리 시간에 L$_{\infty}$ (L$_1$) 디루니 삼각분할을 구축한다. 또한, 이 방법은 직선간의 교차점 계산 대신 거리비교를 하기 때문에 수치오차가 적고 구현이 용이하다.

  • PDF

축에 평행한 도로들이 놓여 있을 때의 $L_1$ 최단 경로 ([$L_1$] Shortest Paths with Isothetic Roads)

  • 배상원;김재훈;좌경룡
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (1)
    • /
    • pp.976-978
    • /
    • 2005
  • We present a nearly optimal ($O(\nu\;min(\nu,\;n)n\;log\;n)$ time and O(n) srace) algorithm that constructs a shortest path map with n isothetic roads of speed $\nu$ under the $L_1$ metric. The algorithm uses the continuous Dijkstra method and its efficiency is based on a new geometric insight; the minimum in-degree of any nearest neighbor graph for points with roads of speed $\nu$ is $\Theta(\nu\;min(\nu,\;n))$, which is first shown in this paper. Also, this algorithm naturally extends to the multi-source case so that the Voronoi diagram for m sites can be computed in $O(\nu\;min(\nu,\;n)(n+m)log(n+m))$ time and O(n+m) space, which is also nearly optimal.

  • PDF

비정형의 건설환경 매핑을 위한 레이저 반사광 강도와 주변광을 활용한 향상된 라이다-관성 슬램 (Intensity and Ambient Enhanced Lidar-Inertial SLAM for Unstructured Construction Environment)

  • 정민우;정상우;장혜수;김아영
    • 로봇학회논문지
    • /
    • 제16권3호
    • /
    • pp.179-188
    • /
    • 2021
  • Construction monitoring is one of the key modules in smart construction. Unlike structured urban environment, construction site mapping is challenging due to the characteristics of an unstructured environment. For example, irregular feature points and matching prohibit creating a map for management. To tackle this issue, we propose a system for data acquisition in unstructured environment and a framework for Intensity and Ambient Enhanced Lidar Inertial Odometry via Smoothing and Mapping, IA-LIO-SAM, that achieves highly accurate robot trajectories and mapping. IA-LIO-SAM utilizes a factor graph same as Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping (LIO-SAM). Enhancing the existing LIO-SAM, IA-LIO-SAM leverages point's intensity and ambient value to remove unnecessary feature points. These additional values also perform as a new factor of the K-Nearest Neighbor algorithm (KNN), allowing accurate comparisons between stored points and scanned points. The performance was verified in three different environments and compared with LIO-SAM.

이미지 데이터베이스에서 매개변수를 필요로 하지 않는 클러스터링 및 아웃라이어 검출 방법 (A Parameter-Free Approach for Clustering and Outlier Detection in Image Databases)

  • 오현교;윤석호;김상욱
    • 전자공학회논문지CI
    • /
    • 제47권1호
    • /
    • pp.80-91
    • /
    • 2010
  • 이미지 데이터가 증가함에 따라 효율적인 검색을 위해서 이미지 데이터를 구조화해야 할 필요성이 증가하고 있다. 이미지 데이터를 구조화하기 위한 대표적인 방법으로는 클러스터링이 있다. 그러나 기존 클러스터링 방법들은 클러스터링을 수행하기 전에 매개변수로서 클러스터의 개수를 사용자로부터 제공 받아야 되는 어려움이 있다. 본 논문에서는 클러스터의 개수를 사용자에게 제공 받지 않고 이미지 데이터를 클러스터링 하는 방안에 대해서 논의 한다. 제안하는 방안은 객체들 간의 상호 연관관계를 이용하여 매개변수 없이 데이터의 감추어진 구조나 패턴을 찾아내는 방법인 Cross-Association을 기반으로 한다. 이미지 데이터 클러스터링에 Cross-Association을 적용하기 위해서는 먼저 이미지 데이터를 그래프로 변환해야 한다. 그런 후에 생성된 그래프를 Cross-Association에 적용시키고 그 결과를 클러스터링 관점에서 해석한다. 본 논문에서는 또한 Cross-Association을 기반으로 계층적 클러스터링 하는 방법과 아웃라이어 검출 방법을 제안한다. 실험을 통해서 제안하는 방법의 우수성을 규명하고 이미지 데이터를 클러스터링 하는데 적절한 k-최근접 이웃검색에서의 k값과 더 나은 그래프 생성 방법이 무엇인지를 제시한다.

사용자 행동 기반의 사회적 관계를 결합한 사용자 협업적 여과 방법 (Incorporating Social Relationship discovered from User's Behavior into Collaborative Filtering)

  • 타이쎄타;하인애;조근식
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.1-20
    • /
    • 2013
  • 소셜 네트워크는 사용자들의 공통된 관심사, 경험, 그리고 일상 생활들을 함께 공유하기 위해 소셜 네트워크 상 사람들을 서로 연결시켜주는 거대한 커뮤니케이션 플랫폼이다. 소셜 네트워크상의 사용자들은 포스팅, 댓글, 인스턴스 메시지, 게임, 소셜 이벤트 외에도 다양한 애플리케이션을 통해 다른 사용자들과 소통하고 개인 정보 관리하는데 많은 시간을 소비한다. 소셜 네트워크 상의 풍부한 사용자 정보는 추천시스템이 추천 성능을 향상시키기 위해 필요한 큰 잠재력이 되었다. 대부분의 사용자들은 어떤 상품을 구매하기 전 가까운 관계이거나 같은 성향을 가진 사람들의 의견을 반영하여 의사 결정을 하게 된다. 그러므로 소셜 네트워크에서의 사용자 관계는 추천시스템을 위한 사용자 선호도 예측을 효율적으로 높이는데 중요한 요소라 할 수 있다. 일부 연구자들은 소셜 네트워크에서의 사용자와 다른 사용자들 사이의 상호작용 즉, 소셜 관계(social relationship)와 같은 소셜 데이터가 추천시스템에서 추천의 질에 어떠한 영향을 미치는가를 연구하고 있다. 추천시스템은 아마존, 이베이, Last.fm과 같은 큰 규모의 전자상거래 사이트 또한 채택하여 사용되는 시스템으로, 추천시스템을 위한 방법으로는 협업적 여과 방법과 내용 기반 여과 방법이 있다. 협업적 여과 방법은 사용자들의 선호도 학습에 의해 사용자가 아직 평가하지 않은 아이템 중 선호할 수 있는 아이템을 정확하게 제안하기 위한 추천시스템 방법 중 하나이다. 협업적 여과는 사용자들의 데이터에 초점을 맞춘 방법으로 유사한 배경과 선호도를 가지는 사용자들로부터 정보를 수집하여 사용자들의 선호도 예측을 자동으로 발생시킨다. 특히 협업적 여과는 근접한 이웃 사용자들에 의해서 목적 사용자가 선호할 수 있는 아이템을 제시하는 것으로 유사한 이웃 사용자를 찾는 것이 중요하다. 좋은 이웃 사용자 발견은 사용자와 아이템을 고려하는 방법이 일반적이다. 각 사용자는 아이템 즉, 영화, 상품, 책 등에 자신의 선호도를 나타내기 위하여 평가 값을 입력하고, 시스템은 이를 바탕으로 사용자-평가 행렬을 구축한다. 이 사용자-평가 행렬은 목적 사용자와 유사하게 아이템을 평가한 사용자 그룹을 찾기 위한 것으로, 목적 사용자가 아직 평가하지 않은 아이템에 대하여 사용자-평가 매트릭스를 통해 그 평가 값을 예측한다. 현재 이 협업적 여과 방법은 전자상거래와 정보 검색에서 적용되어 개인화 시스템에 효율적으로 사용되고 있다. 하지만 초기 사용자 문제, 데이터 희박성 문제와 확장성 그리고 예측 정확도 향상 등 해결해야 할 과제가 여전히 남아 있다. 이러한 문제들을 해소하기 위해 많은 연구자들은 하이브리드, 신뢰기반, 소셜 네트워크 기반 협업적 여과와 같은 다양한 방법을 제안하였다. 본 논문에서는 전통적인 협업적 여과 방식의 예측 정확도와 추천 성능을 향상시키기 위해 소셜 네트워크에 존재하는 소셜 관계를 이용한 협업적 여과 시스템을 제안한다. 소셜 관계는 소셜 네트워크 서비스 중 하나인 페이스북 사용자들이 남긴 포스팅과 사용자의 소셜 네트워크 친구와 의견 교류 중 남긴 코멘트와 같은 사용자 행동을 기반으로 정의된다. 소셜 관계를 구축하기 위해 소셜 네트워크 사용자의 포스팅과 댓글을 추출하고, 추출된 텍스트에 불용어 및 특수 기호 제거와 스테밍 등 전처리를 수행하였다. 특징 벡터는 TF-IDF를 이용하여 전처리된 텍스트에 나타난 각 단어에 대한 특징 점수를 계산함으로써 구축된다. 본 논문에서 이웃 사용자를 결정하기 위해 사용되는 사용자 간 유사도는 특징 벡터를 이용한 사용자 행동 유사도와 사용자의 영화 평가를 기반으로 한 전통적 방법의 유사도를 결합하여 계산된다. 제안하는 시스템은 목표 사용자와 제안한 방법을 통해 결정된 이웃 사용자 집단을 기반으로 목표 사용자가 평가하지 않은 아이템에 대한 선호도를 예측하고 Top-N 아이템을 선별하여 사용자에게 아이템을 추천하게 된다. 본 논문에서 제안하는 방법을 확인하고 평가하기 위하여 IMDB에서 제공하는 영화 정보 기반으로 영화 평가 시스템을 구축하였다. 예측 정확도를 평가하기 위해 MAE 값을 이용하여 제안하는 알고리즘이 얼마나 정확한 추천을 수행하는지에 대한 예측 정확도를 측정하였다. 그리고 정확도, 재현율 및 F1값 등을 활용하여 시스템의 성능을 평가하였으며, 시스템의 추천 품질은 커버리지를 이용하여 평가되었다. 실험 결과로부터 본 논문에서 제안한 시스템이 보다 더 정확하고 좋은 성능으로 사용자에게 아이템을 추천하는 것을 볼 수 있었다. 특히 소셜 네트워크에서 사용자 행동을 기반으로 한 소셜 관계를 이용함으로써 추천 정확도를 6% 향상시킴을 보였다. 또한 벤치마크 알고리즘과의 성능비교 실험을 통해 7% 향상된 추천 성능의 결과를 보여준다. 그러므로 사용자의 행동으로부터 관찰된 소셜 관계를 CF방법과 결합한 제안한 방법이 정확한 추천시스템을 위해 유용하며, 추천시스템의 성능과 품질을 향상시킬 수 있음을 알 수 있다.