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We present a nearly optimal (O(v min(v, n)nlogn) time and O(n) space) algorithm that constructs a shortest path map with n
isothetic roads of speed v under the Ly metric. The algorithm uses the continuous Dijkstra method and its efficiency is based on a new

geometric insight; the minimum in-degree of any nearest neighbor graph for points with roads of speed v is ©(v min(v, n)), which is
first shown in this paper. Also, this algorithm naturally extends to the multi-source case so that the Voronoi diagram for m sites can be
computed in O(v min(v, n)(n + m) log(n + m)) time and O(n + m) space, which is also nearly optimal.

1 Introduction

A transportation network models a facility for faster movement,
such as a highway network and a subway or bus network, and con-
sists of roads which one can move along at a certain fixed speed.
Furthermore, it is assumed that one can access or leave a road
through any point on the road. Thus, in this situation, finding a
shortest (or quickest) path between two points is a very fascinat-
ing and important problem to study not only in theory but also in
practice.

As previous results, Aichholzer, Aurenhammer, and Palop [1]
presented an O(n? logn) time and O(n) space algorithm for con-
structing a shortest path map (SPM) for a given source and show
that the SPM has linear size, and Bae and Chwa [2] obtained the
same bound independently and a different one (O(n?) time/space).
Most recently, an O(nlog®nloglogn) time and O(nlog®n)
space algorithm was presented by Gorke and Wolff [5].

Following is our main result.

Theorem 1. An L shortest path map with n isothetic roads with
speed v in the plane can be computed in O(vn min(v,n)logn)
time and in O(n) space.

This time bound follows from the fact that the minimum in-
degree of any nearest neighbor graph for points with roads of speed
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v is ©(vmin(v,n)), which is first shown in this paper (but the
proof is omitted). Since the speed v is regarded as a constant, the
time bound can be argued to be O(nlogn). The resulting SPM
is a polygonal subdivision of linear size and allows us to find the
length of the shortest path to a query point in O(logn) time by
point location and to report a shortest path in O(logn + k) time,
where k is the complexity of the reported path.

2 Preliminaries

A transportation network on the L, plane is represented as a pla-
nar straight-line graph G(V, E) such that any edge e € E has its
supporting speed v(e) > 1. An edge in E is often called a road
and a vertex in V' a node. A transbortation network together with
its underlying metric induces a new metric, called a transportation
distance [2,3]. In this paper, we deal with transportation networks
of n isothetic roads with v(e) = v foreveryroade € E. '

A needle is a generalized Voronoi site proposed by Bae and
Chwa [3] for easy explanation of the geometry induced by trans-
portation networks. A needle p can be represented by a 4-
tuple (p1(p),p2(p), t1(p),t2(p)) with to(p) 2 ta(p) > O,
where p; (p), p2(p) are two endpoints and ¢ (p), t2(p) are additive
weights of the two endpoints, respectively. For convenient refer-
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ences to a needle, we define some terms associated with a needle:
We let s(p) be the segment p1(0)p2(p) and v(p) the speed of p
defined as di(p2(p), p1(p))/(t2(p) — t1(p))-

The L, distance from any point « to a needle p is measured
as di(z,p) = mingeypy{di(z,y) + wp(y)}, where wy(y) is
the weight assigned to y on s(p), given as w,(y) = ti(p) +
di{y,p1(p))/v(p), forall y € s(p).

It has been shown that the SPM in our setting has a linear size [1]
and further can be represented as a Voronoi diagram for O(n) nee-
dles, which can be computed in an optimal time and space [2].

We apply the continuous Dijkstra paradigm to obtain a shortest
path tree (SPT). The framework of our algorithm is not so different
from that of Mitchell [7] but most of specific details are quite dis-
tinguishable. The continuous Dijkstra method simulates the wave-
front propagation by tracking effects of the pseudo-wavefront that
is easy to maintain but sufficient to express the true wavefront.

In our case, the pseudo-wavefront is represented as a set of
straight line segments, called wavelets. A wavelet w is an arc of a
“circle” centered at root r(w).! Note that the root r(w) of a wavelet
w can be a needle along a certain road. Each wavelet w has a left
and a right track, denoted by a(w) and S(w), respectively, and
expands with its endpoints sliding along its tracks. Each track is
either a portion of an isothetic line or a portion of a bisecting curve
between two certain roots. A bisector B(r, ') between two roots 7
and ' is a piecewise linear and can be computed in constant time,
even if the two roots are needles in general.

On the L; plane, the wavelets are basically inclined at an-
gle either 45° or 135°.
§ makes wavelets inclined at angles 8 £ tan~!1/v(e), where
v(e) is the speed of e [1]. We shall denote the set of such an-
gles by A.. Since we deal only with isothetic roads of speed
v, either A, = {tan"'1/v,~tan"'1/v} or A, = {#x/2 +
tan"!1/v,7/2 — tan~! 1/v}. We thus have only 6 angles for
inclination of wavelets.

However, a road e inclined at angle

After running the continuous Dijkstra method, we obtain the
SPT, the vertex-labeled tree rooted at the given source s. In our
case, a vertex of the SPT is either a node incident to a road (in
V') or the first intersection point of the first crossing road with an
isothetic ray from a node, or just s. We let V' be the set of such
vertices including V and s. We observe that V” has a linear number
of vertices and is sufficient to detect and maintain topological and
geometric changes of wavelets by the following lemma based on
the lemma for primitive paths [2] and other previous results [1].

Lemma 2. For any two points s and 1, there exists an Ly short-
est path P = (s = vy, -+ ,vx = t) such thatv; € V' for

i=0,1,-,k—1L

'Here, a “circle” means a set of all the equidistant points from a given center,
generally being a set of points or a needle.
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3 The Algorithm

Our algorithm works with two phases: we compute an SPT rooted
at s by applying the continuous Dijkstra method and then construct
an SPM from the SPT.

During the first phase, to apply the continuous Dijkstra method,
we maintain the set of active wavelets. Each wavelet is instantiated
and terminated at an event with a certain value of §. An event is
associated with each wavelet and has a corresponding event point
and event distance. We store the wavelets with their associated
information (such as its left/right tracks a(w) and B(w) including
their closure point if any, its root r{w), and its left/right neighbors
L(w) and R(w) if any) in a priority queue, called the event queue,
indexed by event distance. We have two kinds of events: Closure
events occur when two tracks of a wavelet meet at a closure point
p, and cause a wavelet disappearing. Vertex events occur when a
wavelet, either its interior or its endpoint along a track, hits a vertex
inV’.

Every time we instantiate or modify a wavelet, we determine the
corresponding event point and event distance by taking the mini-
mum of the following: the distance to its closure point if any, and
the distance to the first vertex v € V" that is encountered as the
wavelet expands. The second one can be computed via segment
dragging query; this is originally considered by Chazelle [4] and
its variations and applications for handling wavelets under the L,
metric are well described in Mitchell [6]. Also note that even un-
der non-degeneracy a vertex event and a closure event can occur at
the same place and event distance. We break this type of ties by
“closure-first” rule.

Each vertex v € V'’ has a label £(v) and initially £(v) = oco.
After a vertex event on v at event distance &, v has a finite label
£(v) = § < oo and its predecessor pre(v) in the SPT. In this way,
the recent partial shortest path tree SPT'(4) can be maintained.

We also maintain the SPM(8) mriangulation, a decomposition
of multiple copies of the plane, called the sweep space S(6), as
Mitchell {7] did. We call the procedure Clip-and-Merge when-
ever we detect an overlapping portion of the swept region. Clip-
and-Merge resolves overlaps in the projection of the sweep space
onto the plane, and operates in two phases; the first phase finds a
“seed” point by exploring the SPM(4§) triangulation and the seed
will be used in the second phase, called Trace-Bisector. The pro-
cedure Trace-Bisector traces out a merge curve between the over-
lapped portion of the swept region with a given seed point, and
thus merges two overlapped regions into one “sheet”. We detect an
overlapping of the swept region when an already labeled vertex is
hit again by a wavelet. We refer to Mitchell [7] about details for
procedures Clip-and-Merge and Trace-Bisector.
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3.1 Computing the SPT

First, we compute V' as noted earlier and then preprocess V' for
segment dragging queries [4,6]. Then, we initialize the event queue
to consist of these four wavelets at the source s. While the event
queue is not empty, we extract the upcoming event from the front
of the queue and process the event in a natural way according to its
type. Here, we will not state details for event handling procedures
due to lack of space, but we briefly summarize the procedures be-
low:

Closure Event If the current event is a closure event, the associ-
ated wavelet has just been degenerated to a point as the two tracks
meet at the point. Thus, we do remove the wavelet from the set of
active wavelets and merge up its neighbor wavelets. There are two
cases: If the two neighbor wavelets have doubly swept over a com-
mon portion, we call the subroutine Trace-Bisector. Otherwise, we

update tracks of the neighbor wavelets appropriately.

Vertex Event When a wavelet w hits a vertex v € V', a
If [(v) < o0, another wavelet has hit
v already, which means that the current pseudo-wavefront self-
overlaps. Thus, we call the subroutine Clip-and-Merge in this case.
If I(v) = oo, we label v with the current event distance and set

vertex event happens.

pre(v) as the root 7{w) of w. Then, we create new wavelets or
modify existing ones accordingly. We have several cases and sub-
cases here, but we will not state each of them here. Our brief strat-
egy is as follows: Changes and updates happen only locally at v
and neighboring wavelets of w. Wavelets have inclination only of
one of 6 angles as mentioned, and thus the critical task is com-
puting proper tracks for new or existing wavelets, which can be
done by searching a constant number of isothetic rays and bisect-
ing curves between roots of neighboring wavelets.

3.2 Building the SPM from the SPT

The SPT obtained in the first phase consists of labeled vertices and
directed links among the vertices along the roads. From this in-
formation, we can build a set A of needles such that the Voronoi
diagram V(N) for A coincides with the SPM. This has been al-
ready argued in earlier results [1,3]. For needles, we refer to Bae
and Chwa [3].

More precisely, we construct A as follows: for every directed
link pq of the SPT, the needle r belongs to A only if ¢ is along a
road, where p; (1) = p, p2(r) = ¢, t1(r) = £(p), and ta(r) = £(q).
We also observe that V' is pairwise non-piercing, since all wavelets
come into roads through a vertex in V', This implies that V(A) can
be computed in optimal time and space [2]. Consequently, we can
build the SPM from the SPT in O(n log n) time and O(n) space.
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4 The Complexity

Mitchell [7] observed in his results that the maximum in-degree of
any nearest neighbor graph among obstacles under the Euclidean
metric is 6. This observation provides the efficiency of his algo-
rithm since 7 or more roots around one vertex always cause at least
one clipping; as a result, any point in the plane can be swept over
at most 6 times by the wavelets. An analogous argument can be
naturally applied also to our situation.

Lemma 3. Let A be the maximum in-degree of any directed near-
est neighbor graph under the transportation metric induced by a
transportation network and the Ly metric. Then, any point in the
plane can be swept over at most A\ times during the algorithm.

Lemma 4. A = ©(vmin(y,n)).

The above lemmas help us bound the number of events pro-
cessed during the algorithm.

Lemma 5. The algorithm processes at most O(vnmin(v,n))

events.

Each event, before occurring, may involve a segment drag-
ging query among the vertices in V”, which costs O(log n) time,
O(nlogn) preprocessing time, and O(n) space. Finally, we con-
clude the main theorem.
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