• Title/Summary/Keyword: k-nearest neighbor clustering

Search Result 47, Processing Time 0.023 seconds

A Method of Fast Track Merging for Multi-Target Tracking under Heavy Clutter Environment (복잡한 환경에서 다중표적추적을 위한 고속 트랙병합 기법)

  • Lee, Seung-Youn;Yoon, Joo-Hong;Lee, Seok-Jae;Jung, Young-Hun;Choe, Tok-Son
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.513-518
    • /
    • 2012
  • In this paper, we proposed a method of fast track merging which is the foundation of track to track association technique. The existing method of track merging is performed throughout comparison between tracks to tracks. Therefore, it has heavy calculation time. In our research, we developed a method for fast clustering by using nearest neighbor measurement identification. The simulation results show that the proposed method is more faster than previous method about 3.3%. We expect that this method could be effectively used in multi-target tracking particularly in heavy clutter environment.

Posture Symmetry based Motion Capture System for Analysis of Lower -limbs Rehabilitation Training

  • Lee, Seok-Jun;Jung, Soon-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.12
    • /
    • pp.1517-1527
    • /
    • 2011
  • This paper presents a motion capture based rehabilitation training system for a lower-limb paretic patient. The system evaluates the rehabilitation status of the patient by using the bend posture of the knees and the weight balance of the body. The posture of both legs is captured with a single camera using the planar mirror. The weight distribution is obtained by the Wii Balance Board. Self-occlusion problem in the tracking of the legs is resolved by using k-nearest neighbor based clustering with body symmetry and local-linearity of the posture data. To do this, we present data normalization and its symmetric property in the normalized vector space.

Text-independent Speaker Identification Using Soft Bag-of-Words Feature Representation

  • Jiang, Shuangshuang;Frigui, Hichem;Calhoun, Aaron W.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.240-248
    • /
    • 2014
  • We present a robust speaker identification algorithm that uses novel features based on soft bag-of-word representation and a simple Naive Bayes classifier. The bag-of-words (BoW) based histogram feature descriptor is typically constructed by summarizing and identifying representative prototypes from low-level spectral features extracted from training data. In this paper, we define a generalization of the standard BoW. In particular, we define three types of BoW that are based on crisp voting, fuzzy memberships, and possibilistic memberships. We analyze our mapping with three common classifiers: Naive Bayes classifier (NB); K-nearest neighbor classifier (KNN); and support vector machines (SVM). The proposed algorithms are evaluated using large datasets that simulate medical crises. We show that the proposed soft bag-of-words feature representation approach achieves a significant improvement when compared to the state-of-art methods.

Recognition of damage pattern and evolution in CFRP cable with a novel bonding anchorage by acoustic emission

  • Wu, Jingyu;Lan, Chengming;Xian, Guijun;Li, Hui
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.421-433
    • /
    • 2018
  • Carbon fiber reinforced polymer (CFRP) cable has good mechanical properties and corrosion resistance. However, the anchorage of CFRP cable is a big issue due to the anisotropic property of CFRP material. In this article, a high-efficient bonding anchorage with novel configuration is developed for CFRP cables. The acoustic emission (AE) technique is employed to evaluate the performance of anchorage in the fatigue test and post-fatigue ultimate bearing capacity test. The obtained AE signals are analyzed by using a combination of unsupervised K-means clustering and supervised K-nearest neighbor classification (K-NN) for quantifying the performance of the anchorage and damage evolutions. An AE feature vector (including both frequency and energy characteristics of AE signal) for clustering analysis is proposed and the under-sampling approaches are employed to regress the influence of the imbalanced classes distribution in AE dataset for improving clustering quality. The results indicate that four classes exist in AE dataset, which correspond to the shear deformation of potting compound, matrix cracking, fiber-matrix debonding and fiber fracture in CFRP bars. The AE intensity released by the deformation of potting compound is very slight during the whole loading process and no obvious premature damage observed in CFRP bars aroused by anchorage effect at relative low stress level, indicating the anchorage configuration in this study is reliable.

Sleep Deprivation Attack Detection Based on Clustering in Wireless Sensor Network (무선 센서 네트워크에서 클러스터링 기반 Sleep Deprivation Attack 탐지 모델)

  • Kim, Suk-young;Moon, Jong-sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.1
    • /
    • pp.83-97
    • /
    • 2021
  • Wireless sensors that make up the Wireless Sensor Network generally have extremely limited power and resources. The wireless sensor enters the sleep state at a certain interval to conserve power. The Sleep deflation attack is a deadly attack that consumes power by preventing wireless sensors from entering the sleep state, but there is no clear countermeasure. Thus, in this paper, using clustering-based binary search tree structure, the Sleep deprivation attack detection model is proposed. The model proposed in this paper utilizes one of the characteristics of both attack sensor nodes and normal sensor nodes which were classified using machine learning. The characteristics used for detection were determined using Long Short-Term Memory, Decision Tree, Support Vector Machine, and K-Nearest Neighbor. Thresholds for judging attack sensor nodes were then learned by applying the SVM. The determined features were used in the proposed algorithm to calculate the values for attack detection, and the threshold for determining the calculated values was derived by applying SVM.Through experiments, the detection model proposed showed a detection rate of 94% when 35% of the total sensor nodes were attack sensor nodes and improvement of up to 26% in power retention.

Pattern Analysis for Urban Spatial Distribution of Traffic Accidents in Jinju (진주시 교통사고의 도시공간분포패턴 분석)

  • Sung, Byeong Jun;Yoo, Hwan Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.99-105
    • /
    • 2014
  • Since traffic accidents account for the highest proportion of the artificial disasters which occur in urban areas along with fire, more scientific an analysis on the causes of traffic accidents and various prevention measures against traffic accidents are needed. In this study, the research selected Jinju-si, which belongs to local small and medium-sized cities as a research target to analyze the characteristics of temporal and spacial distribution of traffic accidents by associating the data of traffic accidents, occurred in 2013 with the causes of traffic accidents and location information that includes occurrence time and seasonal features. It subsequently examines the spatial correlation between traffic accidents and the characteristics of urban space development according to the plans of land using. As a result, the characteristics of accident distribution according to the types of accidents reveal that side right-angle collisions (car versus car) and pedestrian-crossing accident (car versus man) showed the highest clustering in the density analysis and average nearest neighbor analysis. In particular, traffic accidents occurred the most on roads which connect urban central commercial areas, high-density residential areas, and industrial areas. In addition, human damage in damage conditions, clear day in weather condition, dry condition in the road condition, and three-way intersection in the road way showed the highest clustering.

A Parameter-Free Approach for Clustering and Outlier Detection in Image Databases (이미지 데이터베이스에서 매개변수를 필요로 하지 않는 클러스터링 및 아웃라이어 검출 방법)

  • Oh, Hyun-Kyo;Yoon, Seok-Ho;Kim, Sang-Wook
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.1
    • /
    • pp.80-91
    • /
    • 2010
  • As the volume of image data increases dramatically, its good organization of image data is crucial for efficient image retrieval. Clustering is a typical way of organizing image data. However, traditional clustering methods have a difficulty of requiring a user to provide the number of clusters as a parameter before clustering. In this paper, we discuss an approach for clustering image data that does not require the parameter. Basically, the proposed approach is based on Cross-Association that finds a structure or patterns hidden in data using the relationship between individual objects. In order to apply Cross-Association to clustering of image data, we convert the image data into a graph first. Then, we perform Cross-Association on the graph thus obtained and interpret the results in the clustering perspective. We also propose the method of hierarchical clustering and the method of outlier detection based on Cross-Association. By performing a series of experiments, we verify the effectiveness of the proposed approach. Finally, we discuss the finding of a good value of k used in k-nearest neighbor search and also compare the clustering results with symmetric and asymmetric ways used in building a graph.

A Study on Data Clustering of Light Buoy Using DBSCAN(I) (DBSCAN을 이용한 등부표 위치 데이터 Clustering 연구(I))

  • Gwang-Young Choi;So-Ra Kim;Sang-Won Park;Chae-Uk Song
    • Journal of Navigation and Port Research
    • /
    • v.47 no.4
    • /
    • pp.231-238
    • /
    • 2023
  • The position of a light buoy is always flexible due to the influence of external forces such as tides and wind. The position can be checked through AIS (Automatic Identification System) or RTU (Remote Terminal Unit) for AtoN. As a result of analyzing the position data for the last five years (2017-2021) of a light buoy, the average position error was 15.4%. It is necessary to detect position error data and obtain refined position data to prevent navigation safety accidents and management. This study aimed to detect position error data and obtain refined position data by DBSCAN Clustering position data obtained through AIS or RTU for AtoN. For this purpose, 21 position data of Gunsan Port No. 1 light buoy where RTU was installed among western waters with the most position errors were DBSCAN clustered using Python library. The minPts required for DBSCAN Clustering applied the value commonly used for two-dimensional data. Epsilon was calculated and its value was applied using the k-NN (nearest neighbor) algorithm. As a result of DBSCAN Clustering, position error data that did not satisfy minPts and epsilon were detected and refined position data were acquired. This study can be used as asic data for obtaining reliable position data of a light buoy installed with AIS or RTU for AtoN. It is expected to be of great help in preventing navigation safety accidents.

Improved LTE Fingerprint Positioning Through Clustering-based Repeater Detection and Outlier Removal

  • Kwon, Jae Uk;Chae, Myeong Seok;Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.369-379
    • /
    • 2022
  • In weighted k-nearest neighbor (WkNN)-based Fingerprinting positioning step, a process of comparing the requested positioning signal with signal information for each reference point stored in the fingerprint DB is performed. At this time, the higher the number of matched base station identifiers, the higher the possibility that the terminal exists in the corresponding location, and in fact, an additional weight is added to the location in proportion to the number of matching base stations. On the other hand, if the matching number of base stations is small, the selected candidate reference point has high dependence on the similarity value of the signal. But one problem arises here. The positioning signal can be compared with the repeater signal in the signal information stored on the DB, and the corresponding reference point can be selected as a candidate location. The selected reference point is likely to be an outlier, and if a certain weight is applied to the corresponding location, the error of the estimated location information increases. In order to solve this problem, this paper proposes a WkNN technique including an outlier removal function. To this end, it is first determined whether the repeater signal is included in the DB information of the matched base station. If the reference point for the repeater signal is selected as the candidate position, the reference position corresponding to the outlier is removed based on the clustering technique. The performance of the proposed technique is verified through data acquired in Seocho 1 and 2 dongs in Seoul.

Fast k-NN based Malware Analysis in a Massive Malware Environment

  • Hwang, Jun-ho;Kwak, Jin;Lee, Tae-jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6145-6158
    • /
    • 2019
  • It is a challenge for the current security industry to respond to a large number of malicious codes distributed indiscriminately as well as intelligent APT attacks. As a result, studies using machine learning algorithms are being conducted as proactive prevention rather than post processing. The k-NN algorithm is widely used because it is intuitive and suitable for handling malicious code as unstructured data. In addition, in the malicious code analysis domain, the k-NN algorithm is easy to classify malicious codes based on previously analyzed malicious codes. For example, it is possible to classify malicious code families or analyze malicious code variants through similarity analysis with existing malicious codes. However, the main disadvantage of the k-NN algorithm is that the search time increases as the learning data increases. We propose a fast k-NN algorithm which improves the computation speed problem while taking the value of the k-NN algorithm. In the test environment, the k-NN algorithm was able to perform with only the comparison of the average of similarity of 19.71 times for 6.25 million malicious codes. Considering the way the algorithm works, Fast k-NN algorithm can also be used to search all data that can be vectorized as well as malware and SSDEEP. In the future, it is expected that if the k-NN approach is needed, and the central node can be effectively selected for clustering of large amount of data in various environments, it will be possible to design a sophisticated machine learning based system.