• Title/Summary/Keyword: k-means 군집 알고리즘

Search Result 191, Processing Time 0.024 seconds

Disambiguation of Author Names Using Co-citation (동시인용정보를 이용한 동명이인 저자의 중의성 해소)

  • Kang, In-Su
    • Journal of Information Management
    • /
    • v.42 no.3
    • /
    • pp.167-186
    • /
    • 2011
  • Co-citation means that two or more studies are cited together by a later study. This paper deals with the relationship between co-citation and author disambiguation. Author disambiguation is to cluster same-name author instances into real-world individuals. Co-citation may influence author disambiguation in terms that two or more related research works performed by the same person may be co-cited by some later studies. This article describes automated steps to gather co-citation information from Google scholar, and proposes a new clustering algorithm to effectively integrate co-citation information with other author disambiguation features. Experiments showed that co-citation helps to improve the performance of author disambiguation.

Performance Improvement of Continuous Digits Speech Recognition Using the Transformed Successive State Splitting and Demi-syllable Pair (반음절쌍과 변형된 연쇄 상태 분할을 이용한 연속 숫자 음 인식의 성능 향상)

  • Seo Eun-Kyoung;Choi Gab-Keun;Kim Soon-Hyob;Lee Soo-Jeong
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.1
    • /
    • pp.23-32
    • /
    • 2006
  • This paper describes the optimization of a language model and an acoustic model to improve speech recognition using Korean unit digits. Since the model is composed of a finite state network (FSN) with a disyllable, recognition errors of the language model were reduced by analyzing the grammatical features of Korean unit digits. Acoustic models utilize a demisyllable pair to decrease recognition errors caused by inaccurate division of a phone or monosyllable due to short pronunciation time and articulation. We have used the K-means clustering algorithm with the transformed successive state splitting in the feature level for the efficient modelling of feature of the recognition unit. As a result of experiments, 10.5% recognition rate is raised in the case of the proposed language model. The demi-syllable fair with an acoustic model increased 12.5% recognition rate and 1.5% recognition rate is improved in transformed successive state splitting.

  • PDF

A Statistical Approach for Improving the Embedding Capacity of Block Matching based Image Steganography (블록 매칭 기반 영상 스테가노그래피의 삽입 용량 개선을 위한 통계적 접근 방법)

  • Kim, Jaeyoung;Park, Hanhoon;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.22 no.5
    • /
    • pp.643-651
    • /
    • 2017
  • Steganography is one of information hiding technologies and discriminated from cryptography in that it focuses on avoiding the existence the hidden information from being detected by third parties, rather than protecting it from being decoded. In this paper, as an image steganography method which uses images as media, we propose a new block matching method that embeds information into the discrete wavelet transform (DWT) domain. The proposed method, based on a statistical analysis, reduces loss of embedding capacity due to inequable use of candidate blocks. It works in such a way that computes the variance of each candidate block, preserves candidate blocks with high frequency components while reducing candidate blocks with low frequency components by compressing them exploiting the k-means clustering algorithm. Compared with the previous block matching method, the proposed method can reconstruct secret images with similar PSNRs while embedding higher-capacity information.

A Study on Recommendation Technique Using Mining and Clustering of Weighted Preference based on FRAT (마이닝과 FRAT기반 가중치 선호도 군집을 이용한 추천 기법에 관한 연구)

  • Park, Wha-Beum;Cho, Young-Sung;Ko, Hyung-Hwa
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.419-428
    • /
    • 2013
  • Real-time accessibility and agility are required in u-commerce under ubiquitous computing environment. Most of the existing recommendation techniques adopt the method of evaluation based on personal profile, which has been identified with difficulties in accurately analyzing the customers' level of interest and tendencies, as well as the problems of cost, consequently leaving customers unsatisfied. Researches have been conducted to improve the accuracy of information such as the level of interest and tendencies of the customers. However, the problem lies not in the preconstructed database, but in generating new and diverse profiles that are used for the evaluation of the existing data. Also it is difficult to use the unique recommendation method with hierarchy of each customer who has various characteristics in the existing recommendation techniques. Accordingly, this dissertation used the implicit method without onerous question and answer to the users based on the data from purchasing, unlike the other evaluation techniques. We applied FRAT technique which can analyze the tendency of the various personalization and the exact customer.

Improve reliability of SSD through cluster analysis based on error rate of 3D-NAND flash memory and application of differentiated protection policy (3D-NAND 플래시 메모리의 오류율 기반 군집분석과 차별화된 보호정책 적용을 통한 SSD의 신뢰성 향상 방안)

  • Son, Seung woo;Oh, Min jin;Kim, Jaeho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.1-2
    • /
    • 2021
  • 3D NAND 플래시 메모리는 플래너(2D) NAND 셀을 적층하는 방식으로 단위 면적당 고용량을 제공한다. 하지만 적층 공정의 특성상 각 레이어별 또는 셀 위치에 따라 오류 발생 빈도가 달라질 수 있는 문제가 있다. 이와 같은 현상은 플래시 메모리의 쓰기/지우기(P/E) 횟수가 증가할 수록 두드러진다. SSD와 같은 대부분의 플래시 기반 저장장치는 오류 교정을 위하여 ECC를 사용한다. 이 방법은 모든 플래시 메모리 페이지에 대하여 고정된 보호 강도를 제공하므로 물리적 위치에 따라 에러 발생률이 각기 다르게 나타나는 3D NAND 플래시 메모리에서는 한계를 보인다. 따라서 본 논문에서는 오류 발생률 차이를 보이는 페이지와 레이어를 분류하여 각 영역별로 차별화된 보호강도를 적용한다. 우리는 페이지와 레이어별로 오류 발생률이 현저하게 달라지는 3K P/E 사이클에서 측정된 오류율을 바탕으로 페이지와 레이어를 분류하고 오류에 취약한 영역에 대해서는 패리티 데이터를 추가하여 차별화된 보호 강도를 제공한다. 오류 발생 횟수에 따른 영역 구분을 위하여 K-Means 머신러닝 알고리즘을 사용한다. 우리는 이와 같은 차별화된 보호정책이 3D NAND 플래시 메모리의 신뢰성과 수명향상에 기여할 수 있는 가능성을 보인다.

  • PDF

Analysis method of patent document to Forecast Patent Registration (특허 등록 예측을 위한 특허 문서 분석 방법)

  • Koo, Jung-Min;Park, Sang-Sung;Shin, Young-Geun;Jung, Won-Kyo;Jang, Dong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1458-1467
    • /
    • 2010
  • Recently, imitation and infringement rights of an intellectual property are being recognized as impediments to nation's industrial growth. To prevent the huge loss which comes from theses impediments, many researchers are studying protection and efficient management of an intellectual property in various ways. Especially, the prediction of patent registration is very important part to protect and assert intellectual property rights. In this study, we propose the patent document analysis method by using text mining to predict whether the patent is registered or rejected. In the first instance, the proposed method builds the database by using the word frequencies of the rejected patent documents. And comparing the builded database with another patent documents draws the similarity value between each patent document and the database. In this study, we used k-means which is partitioning clustering algorithm to select criteria value of patent rejection. In result, we found conclusion that some patent which similar to rejected patent have strong possibility of rejection. We used U.S.A patent documents about bluetooth technology, solar battery technology and display technology for experiment data.

Prompt engineering to improve the performance of teaching and learning materials Recommendation of Generative Artificial Intelligence

  • Soo-Hwan Lee;Ki-Sang Song
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.195-204
    • /
    • 2023
  • In this study, prompt engineering that improves prompts was explored to improve the performance of teaching and learning materials recommendations using generative artificial intelligence such as GPT and Stable Diffusion. Picture materials were used as the types of teaching and learning materials. To explore the impact of the prompt composition, a Zero-Shot prompt, a prompt containing learning target grade information, a prompt containing learning goals, and a prompt containing both learning target grades and learning goals were designed to collect responses. The collected responses were embedded using Sentence Transformers, dimensionalized to t-SNE, and visualized, and then the relationship between prompts and responses was explored. In addition, each response was clustered using the k-means clustering algorithm, then the adjacent value of the widest cluster was selected as a representative value, imaged using Stable Diffusion, and evaluated by 30 elementary school teachers according to the criteria for evaluating teaching and learning materials. Thirty teachers judged that three of the four picture materials recommended were of educational value, and two of them could be used for actual classes. The prompt that recommended the most valuable picture material appeared as a prompt containing both the target grade and the learning goal.

Influence of Self-driving Data Set Partition on Detection Performance Using YOLOv4 Network (YOLOv4 네트워크를 이용한 자동운전 데이터 분할이 검출성능에 미치는 영향)

  • Wang, Xufei;Chen, Le;Li, Qiutan;Son, Jinku;Ding, Xilong;Song, Jeongyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.157-165
    • /
    • 2020
  • Aiming at the development of neural network and self-driving data set, it is also an idea to improve the performance of network model to detect moving objects by dividing the data set. In Darknet network framework, the YOLOv4 (You Only Look Once v4) network model was used to train and test Udacity data set. According to 7 proportions of the Udacity data set, it was divided into three subsets including training set, validation set and test set. K-means++ algorithm was used to conduct dimensional clustering of object boxes in 7 groups. By adjusting the super parameters of YOLOv4 network for training, Optimal model parameters for 7 groups were obtained respectively. These model parameters were used to detect and compare 7 test sets respectively. The experimental results showed that YOLOv4 can effectively detect the large, medium and small moving objects represented by Truck, Car and Pedestrian in the Udacity data set. When the ratio of training set, validation set and test set is 7:1.5:1.5, the optimal model parameters of the YOLOv4 have highest detection performance. The values show mAP50 reaching 80.89%, mAP75 reaching 47.08%, and the detection speed reaching 10.56 FPS.

Recognition of Flat Type Signboard using Deep Learning (딥러닝을 이용한 판류형 간판의 인식)

  • Kwon, Sang Il;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.4
    • /
    • pp.219-231
    • /
    • 2019
  • The specifications of signboards are set for each type of signboards, but the shape and size of the signboard actually installed are not uniform. In addition, because the colors of the signboard are not defined, so various colors are applied to the signboard. Methods for recognizing signboards can be thought of as similar methods of recognizing road signs and license plates, but due to the nature of the signboards, there are limitations in that the signboards can not be recognized in a way similar to road signs and license plates. In this study, we proposed a methodology for recognizing plate-type signboards, which are the main targets of illegal and old signboards, and automatically extracting areas of signboards, using the deep learning-based Faster R-CNN algorithm. The process of recognizing flat type signboards through signboard images captured by using smartphone cameras is divided into two sequences. First, the type of signboard was recognized using deep learning to recognize flat type signboards in various types of signboard images, and the result showed an accuracy of about 71%. Next, when the boundary recognition algorithm for the signboards was applied to recognize the boundary area of the flat type signboard, the boundary of flat type signboard was recognized with an accuracy of 85%.

Determination of Tumor Boundaries on CT Images Using Unsupervised Clustering Algorithm (비교사적 군집화 알고리즘을 이용한 전산화 단층영상의 병소부위 결정에 관한 연구)

  • Lee, Kyung-Hoo;Ji, Young-Hoon;Lee, Dong-Han;Yoo, Seoung-Yul;Cho, Chul-Koo;Kim, Mi-Sook;Yoo, Hyung-Jun;Kwon, Soo-Il;Chun, Jun-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.2
    • /
    • pp.59-66
    • /
    • 2001
  • It is a hot issue to determine the spatial location and shape of tumor boundary in fractionated stereotactic radiotherapy (FSRT). We could get consecutive transaxial plane images from the phantom (paraffin) and 4 patients with brain tumor using helical computed tomography(HCT). K-means classification algorithm was adjusted to change raw data pixel value in CT images into classified average pixel value. The classified images consists of 5 regions that ate tumor region (TR), normal region (NR), combination region (CR), uncommitted region (UR) and artifact region (AR). The major concern was how to separate the normal region from tumor region in the combination area. Relative average deviation analysis was adjusted to alter average pixel values of 5 regions into 2 regions of normal and tumor region to define maximum point among average deviation pixel values. And then we drawn gross tumor volume (GTV) boundary by connecting maximum points in images using semi-automatic contour method by IDL(Interactive Data Language) program. The error limit of the ROI boundary in homogeneous phantom is estimated within ${\pm}1%$. In case of 4 patients, we could confirm that the tumor lesions described by physician and the lesions described automatically by the K-mean classification algorithm and relative average deviation analyses were similar. These methods can make uncertain boundary between normal and tumor region into clear boundary. Therefore it will be useful in the CT images-based treatment planning especially to use above procedure apply prescribed method when CT images intermittently fail to visualize tumor volume comparing to MRI images.

  • PDF