본 논문에서는 12색상환을 바탕으로 한 28색의 감성을 추출하여 감성 데이터베이스를 구축한다. 그리고 입력 영상을 K-Means알고리즘을 이용해 클러스터링 하여 방대한 컬러 값들을 그룹화 시킨 후에 데이터베이스와 매칭을 시켜 감성을 추출해 내도록 한다. 또한 아동이 그린 그림에서 컬러 분포도를 이용하여 아동의 색채 감성 심리를 알아보도록 한다.
본 논문에서는 유리재단 문제에 평균장 어닐링과 시뮬레이션된 어닐링 형태의 유전자 알고리즘을 결합한 합성 알고리즘을 분산 처리하여 적용한다. 유리재단 문제는 2차원 2진 패킹 문제로 주어진 원판에 요구되는 사각형 모양의 패턴들을 버려지는 부분이 최소가 되게 배치하는 조합 최적화 문제이다. 제안된 합성 알고리즘은 유전자 알고리즘의 다양한 연산자에 시뮬레이션된 어닐링의 온도개념을 추가하여 평균장 알고리즘에 의한 빠른 평형상태 도달을 유지하게 하였다. MPI를 이용한 분산 합성 알고리즘을 유리재단 문제에 적용하여 실험한 결과 기존의 평균장 어닐링 또는 유전자 알고리즘을 단독으로 사용하였을 때보다 최적의 배치 상태를 나타내었으며 최적해 접근 특성을 유지하면서 문제의 크기에 대하여 선형적인 수행시간 단축을 보여 주었다.
한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
/
pp.109-112
/
2001
기존의 K-means 알고리즘은 학습벡터가 단일군집에 할당되는 방법이 crisp 이므로 다른 군집에 할당될 확률을 무시하게 된다. 따라서 군집화 작업과 관련하여 반복적인 코드북 설계 과정에서 각 학습벡터를 다중 군집으로 할당하는 Fuzzy c-means를 사용한다. 또한 Fuzzy c-means 알고리즘의 학습과정에서 구해지는 각 클래스 의 프로토타입에 가중치를 곱하여 다음 학습의 프로토타입으로 사용함으로써 Fuzzy c-means 알고리즘 적용 결과 얻어지는 코트북의 성능을 기존 알고리즘과 비교하여 개선된 Fuzzy c-means 알고리즘을 찾기 위한 근거를 마련한다.
클러스터링은 데이터 포인트들을 그룹으로 묶어 데이터를 분석하는데 유용하다. 특히 K-means는 가장 널리 쓰이는 클러스터링 알고리즘으로 k개의 군집(Cluster)을 찾는다. 본 논문에서는 기존의 K-means 알고리즘과 비교해 고차원 대규모데이터에 대해서 효율적으로 동작하는 K-means 알고리즘을 제안한다. 제안된 알고리즘은 기존의 알고리즘에서와 같이 거리 정보를 이용해 불필요한 계산을 줄여나가며 또한 움직임 없는 군집들을 계산에서 제외하여 수행시간을 단축한다. 제안된 알고리즘은 기존의 관련연구에서 제안된 알고리즘에 비해 공간을 적게 쓰면서 동시에 빠르다. 실제 고차원 데이터 실험을 통해서 제안된 알고리즘의 효율성을 보였다.
LMF(Least Mean Fourth) 알고리즘은 특히 비정규 잡음 상황에서 안정성 및 빠른 수렴성을 나타낼 뿐만아니라 추정 오차도 낮은 것으로 잘 알려져 있다. 최근 LMS (Least Mean Square) 알고리즘 분야에서는 가변 스텝 크기를 적용한 알고리즘들에 대한 관심이 증대되어 왔다. 그 이유는 가변 스텝 크기 LMS가 다양한 환경에서 고정 스텝 크기 LMS보다 우수한 결과를 내기 때문이다. 본 논문에선 LMF에 대한 가변 스텝 크기의 한 방법으로 기울기 평균 벡터를 사용한 가변 스텝 크기를 사용하는 LMF 알고리즘을 제안한다. 제안된 방법은 가변 스텝 크기 LMS와 마찬가지로 고정 스텝 크기 LMF보다 우수할 것이 예상된다. 본 논문은 그 우수성을 시불변 채널과 시변 채널 각각의 채널 환경하에서 시뮬레이션을 통하여 보인다.
레이더 및 소나와 같은 탐지 시스템에서 잡음 환경은 균질 (homogeneous) 환경과 비균질 (heterogeneous) 환경으로 구분되며 비균질 환경은 간섭 신호 환경 (target masking)과 클러터 경계 환경 (clutter edge)으로 모델링 할 수 있다. VI (variability index) CFAR (constant false alarm rate)는 이러한 다양한 잡음 환경에 강건한 표적신호 탐지 성능의 확보를 위한 방법으로서, mean-level CFAR 알고리즘들 중에서 주어진 잡음 환경에 최적화된 기법을 선택하는 방법이다. 하지만, VI CFAR의 경우 클러터 잡음 경계 환경과 간섭 신호 환경에서 검출 확률이 저하되는 단점을 보인다. 이를 극복하기 위해, 본 논문에서는 TM (trimmed mean) CFAR와 sub-window를 이용하여 비균질 환경에 의한 검출 확률의 저하를 최소화시키는 방법을 제안한다. 모의 전산 실험 결과에 따르면, 제안된 알고리즘은 기존의 VI CFAR 및 단일 CFAR 알고리즘에 비해 간섭 신호 환경과 클러터 경계 환경에서 검출 확률 및 오경보 확률 측면에서 우수한 성능을 보인다.
클러스터링에 있어서 K-means와 FCM(Fuzzy C-means)와 같은 기존의 알고리즘들은 지역적 최소 해에 수렴될 문제와 사전에 클러스터 개수를 결정해야 하는 문제점을 가지고 있다. 본 논문에서는 병렬 탐색을 통해 최적 해를 찾는 진화 알고리즘을 사용하여 지역적 최소 해에 수렴되는 문제점을 개선하였으며, 클러스터의 특성을 표준편차 벡터를 계산하여 중심으로부터 포함된 데이터가 얼마나 분포되어 있는지 알 수 있는 분산도와 임의의 데이터와 모든 중심들간의 거리의 비율로서 얻어지는 소속정도를 고려하여 클러스터간의 간격을 알 수 있는 분리도를 정의함으로써 자동으로 클러스터 개수를 결정할 수 있게 하였다. 실험데이터와 가우시안 분포에 의해 생성된 다차원 실험데이터를 사용하여 제안한 알고리즘이 이러한 문제점들을 해결하고 있음을 보인다.
감성은 인간의 삶과 밀접한 관련을 가지고 있으며 이는 집중력, 학습능력 등 많은 부분에 영향을 주어 다양한 행동 패턴을 가지게 한다. 따라서 본 논문의 목적은 부정감성을 구분하기 위하여 생체신호를 기반으로 주요한 특징들을 추출하는 것이다. 이를 위해 본 논문에서는 심전도, 뇌파, 피부 온도와 피부전도도를 기반으로 생체신호를 측정한 후, 선형분류기와 유전 알고리즘의 조합으로 정확하고 신속한 알고리즘 개발하고, 주요 특징을 추출하였다. 그 결과, 알고리즘은 최대 96.4%의 정확도를 가짐을 확인할 수 있었고, 추출된 파라미터는 심박변이도의 Mean, RMSSD, NN50과 뇌파의 전두엽 영역에서의 ${\sigma}$파와 ${\alpha}$파의 주파수 파워, 두정엽 영역에서 ${\alpha}$파, ${\beta}$파, ${\gamma}$파와 의 주파수 파워, 그리고 피부온도의 평균과 표준편차 값이었다. 이에 따라 각 각의 생체신호를 기반으로 한 추출 된 특징들은 부정감성의 분류에 있어 중요한 역할을 함을 확인할 수 있었다.
이 논문에서는 임의의 시스템 동정에 사용되는 적응필터의 계수를 최적화시키는 방법으로 광범위하게 사용되어지고 있는 기존의 적응 알고리즘인 Least Mean Square(LMS)방법과 최근들어 다양한 최적화 문제에 응용되고 있는 유전자 알고리즘(GA)을 합성한 하이브리드 형태의 적응 알고리즘을 사용한다. 이 알고리즘은 TIR 필터를 설계하는데 있어, 경사하강법의 개념을 사용함으로써 야기되는 지역 수렴문제의 단점을 보완하기 위해, 미분과 같은 결정론적인 규칙없이 단지 확률적인 연산자만으로 진행하는 유전자 알고리즘을 이용한다. 그리고 유전자 알고리즘에 있어서 확률적인 연산을 사용함으로써 발생하는 많은 계산량과 느린 수렴속도 문제를 LMS의 경사하강법을 이용하여 보완한다. 이처럼 유전자 알고리즘이 지닌 장점과 LMS 알고리즘이 갖는 장점을 이용하여 각 알고리즘이 지니는 단점을 서로 보완함으로써 알고리즘의 성능을 향상시키고 이 향상된 알고리즘을 이용하여 최적 필터계수를 찾는다 이렇게 얻은 필터계수값을 이용하여 적응 필터의 성능을 확인 평가한다.
이동통신서비스가 넓게 확대되고, 서비스영역의 확대로 인해 중계기가 급속히 증가하고 있다. 이동통신 서비스의 큰 서비스 구역으로 간섭제거시스템을 위한 새로운 Signed CMA알고리즘을 제안한다. 제안된 Signed CMA알고리즘은 조정된 스텝사이즈 값에 의해 성능이 개선된다. 우리는 Signed CMA의 평균자승에러를 개선한다. 매트랩은 실험결과에 맞춰 제안된 알고리즘과 비교 분석하여 사용한다. 수렴횟수 1000번일 때 스텝사이즈 0.0065를 가진 제안된 Signed CMA알고리즘의 최소자승에러 성능이 기존 CMA 알고리즘보다 약 5 dB 더 낫다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.