• Title/Summary/Keyword: k-band

Search Result 10,566, Processing Time 0.036 seconds

High-temperature superconducting band-pass filters for digital cellular communication system (고온 초전도체를 이용한 이동통신 기지국용 영역통과 필터에 관한 연구)

  • J. H. Lee;Y. H. Do;J. S. Kwak;C. O. Kim;J. P. Hong;K. L. Lee;S. K. Han;K. Char
    • Progress in Superconductivity
    • /
    • v.4 no.2
    • /
    • pp.132-136
    • /
    • 2003
  • Extremely selective high temperature superconducting (HTS) band -pass filters were developed for the base transceiver station applications of Digital Cellular communication Service (DCS). The filters have a bandwidth of 25 MHz at a center frequency of 834 MHz. There are 12 resonators which have spiral-meander microstrip-line structures in order to reduce far-field radiations with a reasonable tunability. As a result, the size of filters is 5 mm $\times$ 17 mm $\times$ 41 mm. Device characteristics exhibited a low insertion loss of -0.4 dB with a -0.2 dB ripple and a return loss better than -10 dB in the pass-band at 65 K. The out-of-band signals were attenuated better than 60 dB about 3.5 MHz from the lower band edge, and 3.8 MHz from the higher band edge.

  • PDF

Temperature dependence of photocurrent spectra for $AgInS_2$ epilayers grown by hot wall epitaxy

  • Baek, Seung-Nam;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.123-124
    • /
    • 2007
  • A silver indium sulfide ($AgInS_2$) epilayer was grown by the hot wall epitaxy method, which has not been reported in the liteniture. The grown $AgInS_2$ epilayer has found to be a chalcopyrite structure and evaluated to be high quality crystal. From the photocurrent measurement in the temperature range from 30 K to 300 K, the two peaks of A and B were only observed, whereas the three peaks of A, B, and C were seen in the PC spectrum of 10 K. These peaks are ascribed to the band-to-band transition. The valence band splitting of $AgInS_2$ was investigated by means of the photocurrent measurement. The temperature dependence of the energy band gap of the $AgInS_2$ obtained from the photocurrent spectrum was well described by the Varshni's relation, $E_g(T)=\;E_g(0)\;eV-(7.78\;{\times}\;10^{-4}\;eV/K)T^2/(T\;+\;116\;K\;K)$. Also, Eg(0) is the energy band gap at 0 K, which is estimated to be 2.036 eV at the valence band state A and 2.186 eV at the valence band state B.

  • PDF

The Design of Microstrip Band-Selective Filter with Narrow Stopband for UWB Application (협대역 저지 특성을 가지는 UWB용 마이크로스트립 필터 설계)

  • Roh, Yang-Woon;Hong, Seok-Jin;Jung, Kyung-Ho;Jung, Ji-Hak;Choi, Jae-Hoon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.7-12
    • /
    • 2005
  • A compact microstrip band-selective filter for ultra-wideband (UWB) radio system is proposed. The filter combines the traditional short-circuited stub highpass filter and coupled resonator bandstop filter on both sides of the mitered 50-ohm microstrip line. To realize the pseudo-highpass filtering characteristic over UWB frequency band (3.1 GHz to 10.6 GHz), a distributed highpass filter scheme is adopted. Three coupled resonators are utilized to obtain the band stop function at the desired frequency band. By meandering the coupled resonators, there is 29% reduction in footprint compared to the traditional bandstop filter using L-shaped resonators. The measured results show that the filter has a wide passband of 146.7 % (2.1 GHz to 10.15 GHz) with low insertion loss and the stop band of 7.42 % (5.32 GHz to 5.73 GHz) for 3-dB bandwidth. The measured group delay is less than 0.7 ns within the passband except the rejection band.

  • PDF

Controllable Band-Notched Slot Antenna for UWB Communication Systems

  • Kueathaweekun, Weerathep;Anantrasirichai, Noppin;Benjangkaprasert, Chawalit;Nakasuwan, Jintana;Wakabayashi, Toshio
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.674-683
    • /
    • 2012
  • We propose a slot antenna consisting of a rectangular slot on the ground plane, fed by a microstrip line with a rectangular-ring-shaped tuning stub that can be deployed in ultra-wideband (UWB) communication systems to avoid interference with wireless local area network (WLAN) communication. Our antenna can achieve a single band-notched property from the 5 GHz frequency to the 6 GHz frequency owing to a controllable band notch that uses L- and J-shaped parasitic elements. The antenna characteristics can be modified to tune the band-notched property (4 GHz to 5 GHz or 6 GHz to 7 GHz) and the bandwidth of the band notch (1 GHz to 2 GHz). Furthermore, the shifted notch with enhanced width of the band notch from 1 GHz to 1.5 GHz is described in this paper. The UWB slot antenna and L- and J-shaped parasitic elements also provide the band-rejection function for reference in the WiMAX (3.5 GHz) and WLAN (5 GHz to 6 GHz) regions of the spectrum. Experiment results evidence the return loss performance, radiation patterns, and antenna gains at different operational frequencies.

Effectiveness of Using the TIR Band in Landsat 8 Image Classification

  • Lee, Mi Hee;Lee, Soo Bong;Kim, Yongmin;Sa, Jiwon;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.3
    • /
    • pp.203-209
    • /
    • 2015
  • This paper discusses the effectiveness of using Landsat 8 TIR (Thermal Infrared) band images to improve the accuracy of landuse/landcover classification of urban areas. According to classification results for the study area using diverse band combinations, the classification accuracy using an image fusion process in which the TIR band is added to the visible and near infrared band was improved by 4.0%, compared to that using a band combination that does not consider the TIR band. For urban area landuse/landcover classification in particular, the producer’s accuracy and user’s accuracy values were improved by 10.2% and 3.8%, respectively. When MLC (Maximum Likelihood Classification), which is commonly applied to remote sensing images, was used, the TIR band images helped obtain a higher discriminant analysis in landuse/landcover classification.

Adaptive Hysteresis Band Current Control Independent of the Back EMFs (역기전력에 무관한 가변 히스테리시스 밴드 전류 제어)

  • Kim, Kyeong-Hwa;Cho, Kwan-Yuhl;Chung, Se-Kyo;Oh, Dong-Seong;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1172-1175
    • /
    • 1992
  • The conventional adaptive hysteresis band current control technique has disadvantages such that on-line calculation of the hysteresis band is very complex, therefore, the adaptive hysteresis band must be stored in the look-up table. In this paper, a new simplified adaptive hysteresis band current control technique with phase decoupling is presented. The adaptive band is independent of the back EMFs. Using this adaptive band and the phase decoupled current error, the modulation frequency is fixed at nearly constant and the PWM inverter has optimal switching pattern.

  • PDF

Design of Dual-Band Power Amplifier for the RFID Frequency-Band (RFID 대역에서 동작하는 이중 대역 전력증폭기 설계)

  • Kim, Jae-Hyun;Hwang, Sun-Gook;Park, Hyo-Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.3
    • /
    • pp.376-379
    • /
    • 2014
  • In this paper, we designed more improving a dual-band power amplifier than the transceiver of RFID reader that operates at 910 MHz and 2.45 GHz. A dual-band power amplifier has two circuits. One matching circuit is composed lumped element in the band of 910 MHz. The other matching circuit using distributed element in the high band of 2.45 GHz. So, this dual-band power amplifier works as Band Rejection Filter in the band of 910 MHz but in the high band of 2.45 GHz works as Band Pass Filter. Therefore, this is composed a microstrip transmission line. A power amplifier is showed gains of 8 dB output power at 910 MHz and 1.5 dB output power at 2.45 GHz. If input power is 10 dBm, both of bands output 20 dBm.

RELATIONSHIP BETWEEN FOREST STAND PARAMETERS AND MULTI-BAND SAR BACKSCATTERING

  • Shin, Jung-Il;Yoon, Jong-Suk;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.332-335
    • /
    • 2008
  • Newly developing SAR (Synthetic Aperture Radar) sensors commonly include high resolution X-band those data are expected to contribute various applications. Recent few studies are presenting potential of X-band SAR data in forest related application. This study tried to investigate the relationship between forest stand parameters and multi-band SAR normalized backscattering. Multi-band SAR data was radiometric corrected to compare signal from different forest stand condition. Then correlation coefficients were estimated between attribute of forest stand map and normalized backscattering coefficients. Although overall correlation coefficients are not high, only X-band shows strong relationship with DBH class than other bands. The signal of C- and L-band is composed of a large number of discrete tree components such as leaves, stems, even background soil. In forest, strength of radar backscattering is affected by complex parameters. Further study might be considered more various forest stand parameters such as canopy density, stand height, volume, and biomass.

  • PDF

Changes of Nitrogen Compounds and Nutritional Evaluation of Soybean Sprout -Part VI. Changes in electrophoretic pattern of protein- (콩나물 제조중(製造中) 질소화합물(窒素化合物)의 변화(變化)와 그 영양학적(營養學的) 연구(硏究) -제육보(第六報). 단백질(蛋白質)의 전기영동양상변화(電氣泳動樣相變化)-)

  • Yang, Cha-Bum;Park, Sang-Ki;Yoon, Suk-Kwon;Park, Hoon
    • Applied Biological Chemistry
    • /
    • v.27 no.2
    • /
    • pp.129-134
    • /
    • 1984
  • Change of protein component in soybean sprout grown at four temperatures was investigated by polyacrylamide gel electrophoresis. Main bands were identified using purified seed globulins. Electrophoretogram showed 5 main bands (a. b, c, d, and p) and 10 minor bands in seed and maximum number (19) of bands (8 main band including 0 and 11 minor) at 4th day after germination in cotyledon. All bands appeared in axis protein but resolution was poor. In cotyledon, a component (most rapidly) and b+c+d component decreased while o+p component and other minor components were increased at 6th day and decreased thereafter. In axis all components increased rapidly, especially in minor components and b+c+d component. High growing temperature accelerated decrease in cotyledon and increase in axis of protein, especially for 11S. The a component was identified as 7S, b+c+d as 11S and o+p as 2S globulin.

  • PDF

A Compact Arbitrary Dual-Band Band-stop Filter Using Composite Right/Left-Handed Transmission Lines (CRLH 전송선을 이용한 소형 이중 대역 대역저지 여파기)

  • Jung, Seung-Back;Yand, Seung-In
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.5
    • /
    • pp.69-74
    • /
    • 2010
  • In this paper, we proposed a compact arbitrary dual-band band-stop filter using CRLH transmission line. The proposed filter used CRLH transmission line as stub and it developed dual-band band-stop characteristics using non-linear phase response of CRLH transmission line. The size of proposed filter is compact. And it can control arbitrary dual stop band. In this paper, designed band-stop filter at GPS band and ISM band As result, the S(2,1) is about -30dB at GPS band and about -29dB at ISM band. The fabricated filter is very compact. Its dimension is 10mm*15mm.