• Title/Summary/Keyword: k-Nearest Neighbors

Search Result 206, Processing Time 0.023 seconds

A Kinematic Approach to Answering Similarity Queries on Complex Human Motion Data (운동학적 접근 방법을 사용한 복잡한 인간 동작 질의 시스템)

  • Han, Hyuck;Kim, Shin-Gyu;Jung, Hyung-Soo;Yeom, Heon-Y.
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.1-11
    • /
    • 2009
  • Recently there has arisen concern in both the database community and the graphics society about data retrieval from large motion databases because the high dimensionality of motion data implies high costs. In this circumstance, finding an effective distance measure and an efficient query processing method for such data is a challenging problem. This paper presents an elaborate motion query processing system, SMoFinder (Similar Motion Finder), which incorporates a novel kinematic distance measure and an efficient indexing strategy via adaptive frame segmentation. To this end, we regard human motions as multi-linkage kinematics and propose the weighted Minkowski distance metric. For efficient indexing, we devise a new adaptive segmentation method that chooses representative frames among similar frames and stores chosen frames instead of all frames. For efficient search, we propose a new search method that processes k-nearest neighbors queries over only representative frames. Our experimental results show that the size of motion databases is reduced greatly (${\times}1/25$) but the search capability of SMoFinder is equal to or superior to that of other systems.

  • PDF

Classifying Indian Medicinal Leaf Species Using LCFN-BRNN Model

  • Kiruba, Raji I;Thyagharajan, K.K;Vignesh, T;Kalaiarasi, G
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3708-3728
    • /
    • 2021
  • Indian herbal plants are used in agriculture and in the food, cosmetics, and pharmaceutical industries. Laboratory-based tests are routinely used to identify and classify similar herb species by analyzing their internal cell structures. In this paper, we have applied computer vision techniques to do the same. The original leaf image was preprocessed using the Chan-Vese active contour segmentation algorithm to efface the background from the image by setting the contraction bias as (v) -1 and smoothing factor (µ) as 0.5, and bringing the initial contour close to the image boundary. Thereafter the segmented grayscale image was fed to a leaky capacitance fired neuron model (LCFN), which differentiates between similar herbs by combining different groups of pixels in the leaf image. The LFCN's decay constant (f), decay constant (g) and threshold (h) parameters were empirically assigned as 0.7, 0.6 and h=18 to generate the 1D feature vector. The LCFN time sequence identified the internal leaf structure at different iterations. Our proposed framework was tested against newly collected herbal species of natural images, geometrically variant images in terms of size, orientation and position. The 1D sequence and shape features of aloe, betel, Indian borage, bittergourd, grape, insulin herb, guava, mango, nilavembu, nithiyakalyani, sweet basil and pomegranate were fed into the 5-fold Bayesian regularization neural network (BRNN), K-nearest neighbors (KNN), support vector machine (SVM), and ensemble classifier to obtain the highest classification accuracy of 91.19%.

Prediction Model of CNC Processing Defects Using Machine Learning (머신러닝을 이용한 CNC 가공 불량 발생 예측 모델)

  • Han, Yong Hee
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.2
    • /
    • pp.249-255
    • /
    • 2022
  • This study proposed an analysis framework for real-time prediction of CNC processing defects using machine learning-based models that are recently attracting attention as processing defect prediction methods, and applied it to CNC machines. Analysis shows that the XGBoost, CatBoost, and LightGBM models have the same best accuracy, precision, recall, F1 score, and AUC, of which the LightGBM model took the shortest execution time. This short run time has practical advantages such as reducing actual system deployment costs, reducing the probability of CNC machine damage due to rapid prediction of defects, and increasing overall CNC machine utilization, confirming that the LightGBM model is the most effective machine learning model for CNC machines with only basic sensors installed. In addition, it was confirmed that classification performance was maximized when an ensemble model consisting of LightGBM, ExtraTrees, k-Nearest Neighbors, and logistic regression models was applied in situations where there are no restrictions on execution time and computing power.

Molecular Dynamics Simulation Studies of Benzene, Toluene, and p-Xylene in NpT Ensemble: Thermodynamic, Structural, and Dynamic Properties

  • Kim, Ja-Hun;Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.447-453
    • /
    • 2002
  • In this paper we have presented the results of thermodynamic, structural, and dynamic properties of model systems for liquid benzene, toluene and p-xylene in an isobaric-isothermal (NpT) ensemble at 283.15, 303.15, 323.15, and 343.15 K using molecular dynamics (MD) simulation. This work is initiated to compensate for our previous canonical (NVT) ensemble MD simulations [Bull. Kor. Chem. Soc. 2001, 23, 441] for the same systems in which the calculated pressures were too low. The calculated pressures in the NpT ensemble MD simulations are close to 1 atm and the volume of each system increases with increasing temperature. The first and second peaks in the center of mass g(r) diminish gradually and the minima increase as usual for the three liquids as the temperature increases. The three peaks of the site-site gC-C(r) at 283.15 K support the perpendicular structure of nearest neighbors in liquid benzene. Two self-diffusion coefficients of liquid benzene via the Einstein equation and via the Green-Kubo relation are in excellent agreement with the experimental measures. The self-diffusion coefficients of liquid toluene and p-xylene are in accord with the trend that the self-diffusion coefficient decreases with increasing number of methyl group. The friction constants calculated from the force auto-correlation (FAC) function with the assumption that the fast random force correlation ends at time which the FAC has the first negative value give a correct qualitative trends: decrease with increase of temperature and increase with the number of methyl group. The friction constants calculated from the FAC's are always less than those obtained from the friction-diffusion relation which reflects that the random FAC decays slower than the total FAC as described by Kubo [Rep. Prog. Phys. 1966, 29, 255].

An Analysis Scheme Design of Customer Spending Pattern using Text Mining (텍스트 마이닝을 이용한 소비자 소비패턴 분석 기법 설계)

  • Jeong, Eun-Hee;Lee, Byung-Kwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.2
    • /
    • pp.181-188
    • /
    • 2018
  • In this paper, we propose an analysis scheme of customer spending pattern using text mining. In proposed consumption pattern analysis scheme, first we analyze user's rating similarity using Pearson correlation, second we analyze user's review similarity using TF-IDF cosine similarity, third we analyze the consistency of the rating and review using Sendiwordnet. And we select the nearest neighbors using rating similarity and review similarity, and provide the recommended list that is proper with consumption pattern. The precision of recommended list are 0.79 for the Pearson correlation, 0.73 for the TF-IDF, and 0.82 for the proposed consumption pattern. That is, the proposed consumption pattern analysis scheme can more accurately analyze consumption pattern because it uses both quantitative rating and qualitative reviews of consumers.

Supervised Rank Normalization for Support Vector Machines (SVM을 위한 교사 랭크 정규화)

  • Lee, Soojong;Heo, Gyeongyong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.11
    • /
    • pp.31-38
    • /
    • 2013
  • Feature normalization as a pre-processing step has been widely used in classification problems to reduce the effect of different scale in each feature dimension and error as a result. Most of the existing methods, however, assume some distribution function on feature distribution. Even worse, existing methods do not use the labels of data points and, as a result, do not guarantee the optimality of the normalization results in classification. In this paper, proposed is a supervised rank normalization which combines rank normalization and a supervised learning technique. The proposed method does not assume any feature distribution like rank normalization and uses class labels of nearest neighbors in classification to reduce error. SVM, in particular, tries to draw a decision boundary in the middle of class overlapping zone, the reduction of data density in that area helps SVM to find a decision boundary reducing generalized error. All the things mentioned above can be verified through experimental results.

Performance Comparison of Machine Learning in the Various Kind of Prediction (다양한 종류의 예측에서 머신러닝 성능 비교)

  • Park, Gwi-Man;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.169-178
    • /
    • 2019
  • Now a day, we can perform various predictions by applying machine learning, which is a field of artificial intelligence; however, the finding of best algorithm in the field is always the problem. This paper predicts monthly power trading amount, monthly power trading amount of money, monthly index of production extension, final consumption of energy, and diesel for automotive using machine learning supervised algorithms. Then, we find most fit algorithm among them for each case. To do this we show the probability of predicting the value for monthly power trading amount and monthly power trading amount of money, monthly index of production extension, final consumption of energy, and diesel for automotive. Then, we try to average each predicting values. Finally, we confirm which algorithm is the most superior algorithm among them.

Variational Bayesian multinomial probit model with Gaussian process classification on mice protein expression level data (가우시안 과정 분류에 대한 변분 베이지안 다항 프로빗 모형: 쥐 단백질 발현 데이터에의 적용)

  • Donghyun Son;Beom Seuk Hwang
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.2
    • /
    • pp.115-127
    • /
    • 2023
  • Multinomial probit model is a popular model for multiclass classification and choice model. Markov chain Monte Carlo (MCMC) method is widely used for estimating multinomial probit model, but its computational cost is high. However, it is well known that variational Bayesian approximation is more computationally efficient than MCMC, because it uses subsets of samples. In this study, we describe multinomial probit model with Gaussian process classification and how to employ variational Bayesian approximation on the model. This study also compares the results of variational Bayesian multinomial probit model to the results of naive Bayes, K-nearest neighbors and support vector machine for the UCI mice protein expression level data.

Personalized Size Recommender System for Online Apparel Shopping: A Collaborative Filtering Approach

  • Dongwon Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.39-48
    • /
    • 2023
  • This study was conducted to provide a solution to the problem of sizing errors occurring in online purchases due to discrepancies and non-standardization in clothing sizes. This paper discusses an implementation approach for a machine learning-based recommender system capable of providing personalized sizes to online consumers. We trained multiple validated collaborative filtering algorithms including Non-Negative Matrix Factorization (NMF), Singular Value Decomposition (SVD), k-Nearest Neighbors (KNN), and Co-Clustering using purchasing data derived from online commerce and compared their performance. As a result of the study, we were able to confirm that the NMF algorithm showed superior performance compared to other algorithms. Despite the characteristic of purchase data that includes multiple buyers using the same account, the proposed model demonstrated sufficient accuracy. The findings of this study are expected to contribute to reducing the return rate due to sizing errors and improving the customer experience on e-commerce platforms.

Study on Soil Moisture Predictability using Machine Learning Technique (머신러닝 기법을 활용한 토양수분 예측 가능성 연구)

  • Jo, Bongjun;Choi, Wanmin;Kim, Youngdae;kim, Kisung;Kim, Jonggun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.248-248
    • /
    • 2020
  • 토양수분은 증발산, 유출, 침투 등 물수지 요소들과 밀접한 연관이 있는 주요한 변수 중에 하나이다. 토양수분의 정도는 토양의 특성, 토지이용 형태, 기상 상태 등에 따라 공간적으로 상이하며, 특히 기상 상태에 따라 시간적 변동성을 보이고 있다. 기존 토양수분 측정은 토양시료 채취를 통한 실내 실험 측정과 측정 장비를 통한 현장 조사 방법이 있으나 시간적, 경제적 한계점이 있으며, 원격탐사 기법은 공간적으로 넓은 범위를 포함하지만 시간 해상도가 낮은 단점이 있다. 또한, 모델링을 통한 토양수분 예측 기술은 전문적인 지식이 요구되며, 복잡한 입력자료의 구축이 요구된다. 최근 머신러닝 기법은 수많은 자료 학습을 통해 사용자가 원하는 출력값을 도출하는데 널리 활용되고 있다. 이에 본 연구에서는 토양수분과 연관된 다양한 기상 인자들(강수량, 풍속, 습도 등)을 활용하여 머신러닝기법의 반복학습을 통한 토양수분의 예측 가능성을 분석하고자 한다. 이를 위해 시공간적으로 토양수분 실측 자료가 잘 구축되어 있는 청미천과 설마천 유역을 대상으로 머신러닝 기법을 적용하였다. 두 대상지에서 2008년~2012년 수문자료를 확보하였으며, 기상자료는 기상자료개방포털과 WAMIS를 통해 자료를 확보하였다. 토양수분 자료와 기상자료를 머신러닝 알고리즘을 통해 학습하고 2012년 기상 자료를 바탕으로 토양수분을 예측하였다. 사용되는 머신러닝 기법은 의사결정 나무(Decision Tree), 신경망(Multi Layer Perceptron, MLP), K-최근접 이웃(K-Nearest Neighbors, KNN), 서포트 벡터 머신(Support Vector Machine, SVM), 랜덤 포레스트(Random Forest), 그래디언트 부스팅 (Gradient Boosting)이다. 토양수분과 기상인자 간의 상관관계를 분석하기 위해 히트맵(Heat Map)을 이용하였다. 히트맵 분석 결과 토양수분의 시간적 변동은 다양한 기상 자료 중 강수량과 상대습도가 가장 큰 영향력을 보여주었다. 또한 다양한 기상 인자 기반 머신러닝 기법 적용 결과에서는 두 지역 모두 신경망(MLP) 기법을 제외한 모든 기법이 전반적으로 실측값과 유사한 형태를 보였으며 비교 그래프에서도 실측값과 예측 값이 유사한 추세를 나타냈다. 따라서 상관관계있는 과거 기상자료를 통해 머신러닝 기법 기반 토양수분의 시간적 변동 예측이 가능할 것으로 판단된다.

  • PDF