• Title/Summary/Keyword: k-NN classification

Search Result 192, Processing Time 0.032 seconds

Morphological Variation Classification of Red Blood Cells using Neural Network Model in the Peripheral Blood Images (말초혈액영상에서 신경망 모델을 이용한 적혈구의 형태학적 변이 분류)

  • Kim, Gyeong-Su;Kim, Pan-Gu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.10
    • /
    • pp.2707-2715
    • /
    • 1999
  • Recently, there have been researches to automate processing and analysing images in the medical field using image processing technique, a fast communication network, and high performance hardware. In this paper, we propose a system to be able to analyze morphological abnormality of red-blood cells for peripheral blood image using image processing techniques. To do this, we segment red-blood cells in the blood image acquired from microscope with CCD camera and then extract UNL fourier features to classify them into 15 classes. We reduce the number of multi-variate features using PCA to construct a more efficient classifier. Our system has the best performance in recognition rate, compared with two other algorithms, LVQ3 and k-NN. So, we show that it can be applied to a pathological guided system.

  • PDF

Emotion Recognition Method of Competition-Cooperation Using Electrocardiogram (심전도를 이용한 경쟁-협력의 감성 인식 방법)

  • Park, Sangin;Lee, Don Won;Mun, Sungchul;Whang, Mincheol
    • Science of Emotion and Sensibility
    • /
    • v.21 no.3
    • /
    • pp.73-82
    • /
    • 2018
  • Attempts have been made to recognize social emotion, including competition-cooperation, while designing interaction in work places. This study aimed to determine the cardiac response associated with classifying competition-cooperation of social emotion. Sixty students from Sangmyung University participated in the study and were asked to play a pattern game to experience the social emotion associated with competition and cooperation. Electrocardiograms were measured during the task and were analyzed to obtain time domain indicators, such as RRI, SDNN, and pNN50, and frequency domain indicators, such as VLF, LF, HF, VLF/HF, LF/HF, lnVLF, lnLF, lnHF, and lnVLF/lnHF. The significance of classifying social emotions was assessed using an independent t-test. The rule-base for the classification was determined using significant parameters of 30 participants and verified from data obtained from another 30 participants. As a result, 91.67% participants were correctly classified. This study proposes a new method of classifying social emotions of competition and cooperation and provides objective data for designing social interaction.

Content-based Music Information Retrieval using Pitch Histogram (Pitch 히스토그램을 이용한 내용기반 음악 정보 검색)

  • 박만수;박철의;김회린;강경옥
    • Journal of Broadcast Engineering
    • /
    • v.9 no.1
    • /
    • pp.2-7
    • /
    • 2004
  • In this paper, we proposed the content-based music information retrieval technique using some MPEG-7 low-level descriptors. Especially, pitch information and timbral features can be applied in music genre classification, music retrieval, or QBH(Query By Humming) because these can be modeling the stochasticpattern or timbral information of music signal. In this work, we restricted the music domain as O.S.T of movie or soap opera to apply broadcasting system. That is, the user can retrievalthe information of the unknown music using only an audio clip with a few seconds extracted from video content when background music sound greeted user's ear. We proposed the audio feature set organized by MPEG-7 descriptors and distance function by vector distance or ratio computation. Thus, we observed that the feature set organized by pitch information is superior to timbral spectral feature set and IFCR(Intra-Feature Component Ratio) is better than ED(Euclidean Distance) as a vector distance function. To evaluate music recognition, k-NN is used as a classifier

An Incremental Multi Partition Averaging Algorithm Based on Memory Based Reasoning (메모리 기반 추론 기법에 기반한 점진적 다분할평균 알고리즘)

  • Yih, Hyeong-Il
    • Journal of IKEEE
    • /
    • v.12 no.1
    • /
    • pp.65-74
    • /
    • 2008
  • One of the popular methods used for pattern classification is the MBR (Memory-Based Reasoning) algorithm. Since it simply computes distances between a test pattern and training patterns or hyperplanes stored in memory, and then assigns the class of the nearest training pattern, it is notorious for memory usage and can't learn additional information from new data. In order to overcome this problem, we propose an incremental learning algorithm (iMPA). iMPA divides the entire pattern space into fixed number partitions, and generates representatives from each partition. Also, due to the fact that it can not learn additional information from new data, we present iMPA which can learn additional information from new data and not require access to the original data, used to train. Proposed methods have been successfully shown to exhibit comparable performance to k-NN with a lot less number of patterns and better result than EACH system which implements the NGE theory using benchmark data sets from UCI Machine Learning Repository.

  • PDF

Automatic Identification of Database Workloads by using SVM Workload Classifier (SVM 워크로드 분류기를 통한 자동화된 데이터베이스 워크로드 식별)

  • Kim, So-Yeon;Roh, Hong-Chan;Park, Sang-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.84-90
    • /
    • 2010
  • DBMS is used for a range of applications from data warehousing through on-line transaction processing. As a result of this demand, DBMS has continued to grow in terms of its size. This growth invokes the most important issue of manually tuning the performance of DBMS. The DBMS tuning should be adaptive to the type of the workload put upon it. But, identifying workloads in mixed database applications might be quite difficult. Therefore, a method is necessary for identifying workloads in the mixed database environment. In this paper, we propose a SVM workload classifier to automatically identify a DBMS workload. Database workloads are collected in TPC-C and TPC-W benchmark while changing the resource parameters. Parameters for SVM workload classifier, C and kernel parameter, were chosen experimentally. The experiments revealed that the accuracy of the proposed SVM workload classifier is about 9% higher than that of Decision tree, Naive Bayes, Multilayer perceptron and K-NN classifier.

Stiffness Enhancement of Piecewise Integrated Composite Beam using 3D Training Data Set (3차원 학습 데이터를 이용한 PIC 보의 강성 향상에 대한 연구)

  • Ji, Seungmin;Ham, Seok Woo;Choi, Jin Kyung;Cheon, Seong S.
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.394-399
    • /
    • 2021
  • Piecewise Integrated Composite (PIC) is a new concept to design composite structures of multiple stacking angles both for in-plane direction and through the thickness direction in order to improve stiffness and strength. In the present study, PIC beam was suggested based on 3D training data instead of 2D data, which did offer a limited behavior of beam characteristics, with enhancing the stiffness accompanied by reduced tip deformation. Generally training data were observed from the designated reference finite elements, and preliminary FE analysis was conducted with respect to regularly distributed reference elements. Also triaxiality values for each element were obtained in order to categorize the loading state, i.e. tensile, compressive or shear. The main FE analysis was conducted to predict the mechanical characteristics of the PIC beam.

Learning Bayesian Networks for Text Documents Classification (텍스트 문서 분류를 위한 베이지안망 학습)

  • 황규백;장병탁;김영택
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.262-264
    • /
    • 2000
  • 텍스트 문서 분류는 텍스트 형태로 주어진 문서를 종류별로 구분하는 작업으로 웹페이지 검색, 뉴스 그룹 검색, 메일 필터링 등이 분야에 응용될 수 있는 기반 작업이다. 지금까지 문서를 분류하는데는 k-NN, 신경망 등 여러 가지 기계학습 기법이 이용되어 왔다. 이 논문에서는 베이지안망을 이용해서 텍스트 문서 분류를 행한다. 베이지안망은 다수의 변수들간의 확률적 관계를 표현하는 그래프 모델로 DAG 형태인 망 구조와 각 노드에 연관된 지역확률분포로 구성된다. 그래프 모델을 사용할 경우 학습에 이용되는 각 속성들간의 관계를 사람이 알아보기 쉬운 형태로 학습할 수 있다는 장점이 있다. 실험 데이터로는 Reuters-21578 문서분류데이터를 이용했으며 베이안망의 성능은 나이브 베이즈 분류기와 비슷했다.

  • PDF

An Automatic recognition system for Wild edible greens classification (산나물 자동 인식 시스템)

  • Kim, Jin-seo;Kwon, Su-jeong;Kim, Hyun-jung;Won, Il-Young
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.1521-1524
    • /
    • 2013
  • 식물의 종류를 자동으로 인식하는 방법에 대한 연구는 그 필요성이 증가하고 있다. 본 연구는 한국의 산나물을 자동으로 인식하는 방법에 관한 것이다. 본 논문에서 제안하는 방법은 산나물의 잎을 대상으로 잎의 비율과 잎맥을 추출하여 히스토그램을 구하고, K-NN을 통해 학습하고 판단하는 시스템이다. 제안하는 시스템의 성능은 실험으로 증명하였으며, 어느 정도 의미 있는 결과를 얻을 수 있었다.

A Study on Classification Models for Predicting Bankruptcy using XAI (XAI 를 활용한 기업 부도예측 분류모델 연구)

  • Kim, Jihong;Moon, Nammee
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.571-573
    • /
    • 2022
  • 최근 금융기관에서는 축적된 금융 빅데이터를 활용하여 차별화된 서비스를 강화하고 있다. 기업고객에 투자하기 위해서는 보다 정밀한 기업분석이 필요하다. 본 연구는 대만기업 6,819개의 95개 재무데이터를 가지고, 비대칭 데이터 문제해결, 데이터 표준화 등 데이터 전처리 작업을 하였다. 해당 데이터는 로지스틱 회기, SVM, K-NN, 나이브 베이즈, 의사결정나무, 랜덤포레스트 등 9가지 분류모델에 5겹 교차검증을 적용하여 학습한 후 모델 성능을 비교하였다. 이 중에서 성능이 가장 우수한 분류모델을 선택하여 예측 결정 이유를 판단하고자 설명 가능한 인공지능(XAI)을 적용하여 예측 결과에 대한 설명을 부여하여 이를 분석하였다. 본 연구를 통해 데이터 전처리에서부터 모델 예측 결과 설명에 이르는 분류예측모델의 전주기를 자동화하는 시스템을 제시하고자 한다.

Improved Focused Sampling for Class Imbalance Problem (클래스 불균형 문제를 해결하기 위한 개선된 집중 샘플링)

  • Kim, Man-Sun;Yang, Hyung-Jeong;Kim, Soo-Hyung;Cheah, Wooi Ping
    • The KIPS Transactions:PartB
    • /
    • v.14B no.4
    • /
    • pp.287-294
    • /
    • 2007
  • Many classification algorithms for real world data suffer from a data class imbalance problem. To solve this problem, various methods have been proposed such as altering the training balance and designing better sampling strategies. The previous methods are not satisfy in the distribution of the input data and the constraint. In this paper, we propose a focused sampling method which is more superior than previous methods. To solve the problem, we must select some useful data set from all training sets. To get useful data set, the proposed method devide the region according to scores which are computed based on the distribution of SOM over the input data. The scores are sorted in ascending order. They represent the distribution or the input data, which may in turn represent the characteristics or the whole data. A new training dataset is obtained by eliminating unuseful data which are located in the region between an upper bound and a lower bound. The proposed method gives a better or at least similar performance compare to classification accuracy of previous approaches. Besides, it also gives several benefits : ratio reduction of class imbalance; size reduction of training sets; prevention of over-fitting. The proposed method has been tested with kNN classifier. An experimental result in ecoli data set shows that this method achieves the precision up to 2.27 times than the other methods.