• 제목/요약/키워드: k-NN algorithm

검색결과 273건 처리시간 0.023초

미분진화 기반의 초단기 호우예측을 위한 특징 선택 (Feature Selection to Predict Very Short-term Heavy Rainfall Based on Differential Evolution)

  • 서재현;이용희;김용혁
    • 한국지능시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.706-714
    • /
    • 2012
  • 본 논문에서는 대한민국의 국립기상연구소에서 제공한 최근 4년간의 데이터를 훈련 데이터, 검증 데이터 및 테스트 데이터로 나누어 초단기 호우 예측을 하고자 한다. 우리는 데이터 셋을 훈련 데이터, 검증 데이터와 테스트 데이터 세 부분으로 나눴다. 데이터의 차원이 커짐에 따라 해 공간의 크기가 지수적으로 증가하여 실험의 속도가 현저히 떨어지는 문제를 피하기 위하여 72개의 특징들 중에서 주요한 특징들만을 선택하게 되었다. 예측의 정확도를 높이기 위해 미분진화 알고리즘을 사용하였고, 진화연산의 적합도 함수로 두 개의 분류기를 선택하였는데, 일반적으로 우수한 성능을 보이는 서포트 벡터 머신(SVM)과 분류 속도가 빠른 최근린법(k-NN)을 사용하였다. 또한, 실험에 사용할 데이터 가공을 위해 언더샘플링과 정규화를 하였다. 진화연산의 적합도 함수로 SVM 분류기를 사용하였을 때 실험 결과가 대체로 우수하였는데, 미분진화 알고리즘 실험은 모든 특징을 선택한 실험보다 약 5 배 정도 우수한 성능을 보였고, 유전 알고리즘을 사용한 실험보다 약 1.36 배 정도 더 우수한 성능을 보였다. 실험 속도 면에서는 미분진화 알고리즘을 사용한 실험이 유전 알고리즘을 사용한 실험보다 약 20배 이상 실험 시간이 단축되었다.

High Efficiency Drive Technique for Synchronous Reluctance Motors Using a Neural Network

  • Urasaki Naomitsu;Senjyu Tomonobu
    • Journal of Power Electronics
    • /
    • 제6권4호
    • /
    • pp.340-346
    • /
    • 2006
  • A high efficiency drive technique for synchronous reluctance motors (SynRM) using a neural network (NN) is presented in this paper. High efficiency drive condition depends on the mathematical model of SynRM. A NN is employed as an adaptive model of SynRM. The proposed high efficiency drive technique does not require an accurate mathematical model of SynRM. Moreover, the proposed method shows robustness against machine parameter variations because the training algorithm of the NN is executed on-line. The usefulness of the proposed method is confirmed through experimentation.

Adaptive Fuzzy Neuro Controller for Speed Control of Induction Motor

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • 조명전기설비학회논문지
    • /
    • 제26권7호
    • /
    • pp.9-15
    • /
    • 2012
  • This paper is proposed the adaptive fuzzy neuro controller(AFNC) for high performance of induction motor drive. The design of this algorithm based on the AFNC that is implemented using fuzzy controller(FC) and neural network(NN). This controller uses fuzzy rule as training patterns of a NN. Also, this controller adjusts the weights between the neurons of NN to minimize the error between the command output and the actual output using the back-propagation method. The control performance of the AFNC is evaluated by analysis in various operating conditions. The results of analysis prove that the proposed control system has high performance and robustness to parameter variation, and steady-state accuracy and transient response.

바이올린과 첼로 연주 데이터를 이용한 분류 알고리즘의 성능 비교 (Performance Comparison of Classification Algorithms in Music Recognition using Violin and Cello Sound Files)

  • 김재천;곽경섭
    • 한국통신학회논문지
    • /
    • 제30권5C호
    • /
    • pp.305-312
    • /
    • 2005
  • 음악인식에 주로 사용되는 세 가지 알고리즘의 성능을 비교하였다. 다양한 분류알고리즘을 소개하고 그 중 베이지안법, 최근접이웃법과 k-최근접이웃법을 이용하여 악기를 분류하였다. 악기 샘플파일에서 영교차율, 평균, 분산, 평균피크레벨의 4가지 특성값을 추출하여 분류시스템의 데이터로 사용하였다. 사용된 악기 샘플은 바이올린, 바로크 바이올린, 바로크 첼로이다. 실험결과 최근접이웃 알고리즘이 악기 분류에 있어서 가장 좋은 성능을 보여 주었다. 최근접이웃 알고리즘은 단순하면서도 빠른 계산결과를 보여 악기 분류에 적절한 알고리즘으로 판단되었다.

Energy Detector based Time of Arrival Estimation using a Neural Network with Millimeter Wave Signals

  • Liang, Xiaolin;Zhang, Hao;Gulliver, T. Aaron
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권7호
    • /
    • pp.3050-3065
    • /
    • 2016
  • Neural networks (NNs) are extensively used in applications requiring signal classification and regression analysis. In this paper, a NN based threshold selection algorithm for 60 GHz millimeter wave (MMW) time of arrival (TOA) estimation using an energy detector (ED) is proposed which is based on the skewness, kurtosis, and curl of the received energy block values. The best normalized threshold for a given signal-to-noise ratio (SNR) is determined, and the influence of the integration period and channel on the performance is investigated. Results are presented which show that the proposed NN based algorithm provides superior precision and better robustness than other ED based algorithms over a wide range of SNR values. Further, it is independent of the integration period and channel model.

도로 네트워크 환경에서 암호화된 공간데이터를 위한 K-최근접점 질의 처리 알고리즘 (A K-Nearest Neighbour Query Processing Algorithm for Encrypted Spatial Data in Road Network)

  • 장미영;장재우
    • Spatial Information Research
    • /
    • 제20권3호
    • /
    • pp.67-81
    • /
    • 2012
  • 최근 클라우드 컴퓨팅의 발전에 따라, 데이터베이스 아웃소싱(Outsourcing)에 대한 연구가 활발히 진행되고 있다. 또한 무선 통신 기술 및 모바일 기기의 발전으로 인해 위치 기반 서비스를 이용하는 사용자의 수가 증가하였다. 따라서 개인 또는 소규모의 사업자는 데이터 저장 및 관리 비용을 줄이기 위해 그들의 공간 데이터를 위치 기반 서비스 제공자에게 아웃소싱 한다. 그러나 사용자의 위치 정보는 시간대별 방문 장소 및 개인 정보를 지니고 있기 때문에, 이에 대한 허용되지 않은 접근 시 개인 정보 유출 문제가 발생한다. 따라서 위치 정보 아웃소싱을 위한 개인 정보 보호 연구가 필요하다. 이러한 문제를 해결하기 위해, 본 논문에서는 아웃소싱 환경에서 도로네트워크를 고려한 암호화된 공간 데이터베이스 기반 k-최근접점 질의 처리 알고리즘을 제안하였다. 제안하는 기법은 데이터베이스 아웃소싱을 위해 위치 데이터를 네트워크 거리 정보로 변환 및 암호화한 가공데이터를 생성하여 이를 서비스 제공자에게 전송한다. 또한, 전처리 과정을 통해 네트워크 노드와 POI 거리를 미리 저장하여 네트워크 탐색을 빠르게 수행하며, 질의 수행 시 최근접 대표 POI 및 암호화된 거리 정보를 이용하여 질의 결과 후보 집합을 탐색한다. 마지막으로, 질의 영역 재설정 과정을 통해 불필요한 후보 탐색을 줄임으로써 효율적으로 POI를 탐색한다. 마지막으로, 성능평가를 통해 제안하는 기법이 기존 방법에 비해 우수함을 보인다.

공작기계의 절삭용 인서트의 잔여 유효 수명 예측 모형 (Machine Learning Model for Predicting the Residual Useful Lifetime of the CNC Milling Insert)

  • 최원근;김흥섭;고봉진
    • 한국항행학회논문지
    • /
    • 제27권1호
    • /
    • pp.111-118
    • /
    • 2023
  • 스마트팩토리의 구축을 위해서는 제조환경에서 여러 센서 및 기기 등을 연결하여 데이터를 수집하고, 데이터 분석을 통해 생산설비 등의 장애를 진단하거나 예측하여야 한다. 본 논문에서는 공작기계에서 제품을 가공하기 위해 사용되는 절삭용 인서트의 잔여 유효 수명을 예측하기 위해 진동 신호를 기반으로 한 가중화 k-최근접이웃(Weighted k-NN) 알고리즘, 의사결정나무(Decision Tree), 서포트벡터회귀(SVM), XGBoost, 랜덤포레스트(Random forest), 1차원 합성곱신경망(1D-CNN), 그리고 진동 신호를 FFT한 주파수 스펙트럼에 대해 알아보았다. 연구결과, 주파수 스펙트럼으로는 잔여 유효수명의 정확한 예측에 대해서는 신빙성있는 기준을 제공하지 못한다는 것을 알수 있었고, 예측 모델 중 가중화 k-최근접이웃 알고리즘이 MAE가 0.0013, MSE가 0.004, RMSE가 0.0192로 가장 우수한 성능을 나타내었다. 이는 가중화 k-최근접이웃 알고리즘에 의해 예측되는 인서트의 잔여 유효 수명의 오차가 0.001초 수준으로 평가되어, 실제 산업현장에 적용이 가능한 수준으로 사료된다.

진화와 학습의 상호 적응에 의한 자발적 주행 로봇을 위한 재귀 신경망 제어기 설계 (A Design of the Recurrent NN Controller for Autonomous Mobil Robot by Coadaptation of Evolution and Learning)

  • 김대진;강대성
    • 전자공학회논문지CI
    • /
    • 제37권3호
    • /
    • pp.27-38
    • /
    • 2000
  • 본 논문은 장애물 회피 능력을 갖는 자발적 주행 로봇 (Khepera)을 제어하는 재귀 신경망을 진화와 학습의 상호 적응에 의해 결정하는 방안을 제시한다. 제안한 동시 적응 방안은 다음 두 가지 성질을 갖는다. 유전자 알고리즘에 의해 해집단내 여러 개의 신경망 제어기들은 전역적 탐색을 수행하여 점진적으로 장애물과의 충돌이 적게 일어나도록 진화되고, 동시에 각 신경망 제어기는 상보적 재강화 역전파 (CRBP: Complementary Reinforcement Backpropagation) 학습에 의해 국부적 탐색을 수행하여 주행 특성이 로봇이 처한. 외부 환경에 적응되어진다. 실험 결과, 학습과 결합한 진화에 의해 얻어진 신경망 제어기가 진화자체만에 의해 얻어진 신경망 제어기보다 더 나은 충돌 회피 능력을 보여 주며, 원하는 주행 성능에 보다 빨리 도달하는 것을 확인할 수 있다.

  • PDF

내용기반 오디오 장르 분류를 위한 신호 처리 연구 (A Study on the Signal Processing for Content-Based Audio Genre Classification)

  • 윤원중;이강규;박규식
    • 대한전자공학회논문지SP
    • /
    • 제41권6호
    • /
    • pp.271-278
    • /
    • 2004
  • 본 논문에서는 디지털 신호처리를 이용하여 Classic, Hiphop, Jazz, Rock, Speech 등 5개의 오디오 장르를 자동적으로 분류하는 내용기반 오디오 장르 분류기를 제안하였다. 20초 분량의 질의 오디오로부터 23ms 크기의 Hamming window를 이동시켜 가며 Spectral Centroid, Rolloff, Flux 등 STFT 기반의 특징 계수들과 MFCC, LPC 등의 계수들을 구하여 총 54차에 해당하는 특징 벡터 열을 추출하였으며 분류 알고리즘으로는 k-NN, Gaussian, GMM 분류기를 사용하였다. 최적의 특징 벡터를 선별하는 알고리즘으로 총 54차의 특징벡터 중 가장 성능이 좋은 특징 계수들을 찾아 순차적으로 재배치하는 SFS(Sequential Forward Selection)방법을 사용하였고, 이를 이용하여 최적화 된 10차의 특징 벡터만을 선정해서 오디오 장르 분류에 사용하였다. SFS를 적용한 실험 결과 약 90% 가까운 분류 성공률을 보이고 있어 기존 연구에 비하여 약 10%∼20% 정도의 성능 향상을 꾀 할 수 있었다. 한편 실제 사용자들이 오디오 자동 장르 분류 시스템을 사용할 때 일어날 수 있는 상황을 가정하여 임의 구간에서 질의 데이터를 추출하여 실험을 수행하였으며 실험 결과 오디오 파일의 맨 앞과 맨 뒤 등 worst-case 질의를 제외하고는 약 80%대의 분류 성공률을 얻을 수 있었다.

전류 및 자속센서를 이용한 유도전동기 예방진단 알고리즘 개발에 관한 연구 (Study on the Development of Diagnosis Algorithm for Induction Motor Using Current and Magnetic Flux Sensors)

  • 한상보
    • 전기전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.1157-1165
    • /
    • 2019
  • 본 논문은 전류신호와 자속신호를 이용한 유도전동기 예방진단시스템을 개발하기 위한 머신러닝 알고리즘의 개발 및 적용 결과에 대하여 논하였다. 유도전동기의 결함 종류를 판별하기 위한 최적 특징추출단계를 통하여 총 29개의 특징을 도출하였다. 특히, 전류신호의 제7차 고조파 중심으로부터 사이드밴드까지의 주파수의 차이가 부하율 증가에 따라서 증가되는 경향을 이용하여 임의의 부하율 상태를 반영할 수 있는 알고리즘을 도출하였으며, KPCA 특징 축소 기법, k-NN 판단 알고리즘에 의한 분류 정확도를 조사한 결과, 약 84.6%의 분류 정확도를 보였다.