• Title/Summary/Keyword: k-NN Classification

Search Result 192, Processing Time 0.029 seconds

A Study on the Storage Requirement and Incremental Learning of the k-NN Classifier (K_NN 분류기의 메모리 사용과 점진적 학습에 대한 연구)

  • 이형일;윤충화
    • The Journal of Information Technology
    • /
    • v.1 no.1
    • /
    • pp.65-84
    • /
    • 1998
  • The MBR (Memory Based Reasoning) is a supervised learning method that utilizes the distances among the input and trained patterns in its classification, and is also called a distance based learning algorithm. The MBR is based on the k-NN classifier, in which teaming is performed by simply storing training patterns in the memory without any further processing. This paper proposes a new learning algorithm which is more efficient than the traditional k-NN classifier and has incremental learning capability, Furthermore, our proposed algorithm is insensitive to noisy patterns, and guarantees more efficient memory usage.

  • PDF

Design and Implementation of the Ensemble-based Classification Model by Using k-means Clustering

  • Song, Sung-Yeol;Khil, A-Ra
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.10
    • /
    • pp.31-38
    • /
    • 2015
  • In this paper, we propose the ensemble-based classification model which extracts just new data patterns from the streaming-data by using clustering and generates new classification models to be added to the ensemble in order to reduce the number of data labeling while it keeps the accuracy of the existing system. The proposed technique performs clustering of similar patterned data from streaming data. It performs the data labeling to each cluster at the point when a certain amount of data has been gathered. The proposed technique applies the K-NN technique to the classification model unit in order to keep the accuracy of the existing system while it uses a small amount of data. The proposed technique is efficient as using about 3% less data comparing with the existing technique as shown the simulation results for benchmarks, thereby using clustering.

Pattern Classification Algorithm for Wrist Movements based on EMG (근전도 신호 기반 손목 움직임 패턴 분류 알고리즘에 대한 연구)

  • Cui, H.D.;Kim, Y.H.;Shim, H.M.;Yoon, K.S.;Lee, S.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.2
    • /
    • pp.69-74
    • /
    • 2013
  • In this paper, we propose the pattern classification algorithm of recognizing wrist movements based on electromyogram(EMG) to raise the recognition rate. We consider 30 characteristics of EMG signals wirh the root mean square(RMS) and the difference absolute standard deviation value(DASDV) for the extraction of precise features from EMG signals. To get the groups of each wrist movement, we estimated 2-dimension features. On this basis, we divide each group into two parts with mean to compare and promote the recognition rate of pattern classification effectively. For the motion classification based on EMG, the k-nearest neighbor(k-NN) is used. In this paper, the recognition rate is 92.59% and 0.84% higher than the study before.

  • PDF

Design of Gas Classifier Based On Artificial Neural Network (인공신경망 기반 가스 분류기의 설계)

  • Jeong, Woojae;Kim, Minwoo;Cho, Jaechan;Jung, Yunho
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.700-705
    • /
    • 2018
  • In this paper, we propose the gas classifier based on restricted column energy neural network (RCE-NN) and present its hardware implementation results for real-time learning and classification. Since RCE-NN has a flexible network architecture with real-time learning process, it is suitable for gas classification applications. The proposed gas classifier showed 99.2% classification accuracy for the UCI gas dataset and was implemented with 26,702 logic elements with Intel-Altera cyclone IV FPGA. In addition, it was verified with FPGA test system at an operating frequency of 63MHz.

Improvements of Multi-features Extraction for EMG for Estimating Wrist Movements (근전도 신호기반 손목 움직임의 추정을 위한 다중 특징점 추출 기법 알고리즘)

  • Kim, Seo-Jun;Jeong, Eui-Chul;Lee, Sang-Min;Song, Young-Rok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.757-762
    • /
    • 2012
  • In this paper, the multi feature extraction algorithm for estimation of wrist movements based on Electromyogram(EMG) is proposed. For the extraction of precise features from the EMG signals, the difference absolute mean value(DAMV), the mean absolute value(MAV), the root mean square(RMS) and the difference absolute standard deviation value(DASDV) to consider amplitude characteristic of EMG signals are used. We figure out a more accurate feature-set by combination of two features out of these, because of multi feature extraction algorithm is more precise than single feature method. Also, for the motion classification based on EMG, the linear discriminant analysis(LDA), the quadratic discriminant analysis(QDA) and k-nearest neighbor(k-NN) are used. We implemented a test targeting twenty adult male to identify the accuracy of EMG pattern classification of wrist movements such as up, down, right, left and rest. As a result of our study, the LDA, QDA and k-NN classification method using feature-set with MAV and DASDV showed respectively 87.59%, 89.06%, 91.75% accuracy.

Improving of kNN-based Korean text classifier by using heuristic information (경험적 정보를 이용한 kNN 기반 한국어 문서 분류기의 개선)

  • Lim, Heui-Seok;Nam, Kichun
    • The Journal of Korean Association of Computer Education
    • /
    • v.5 no.3
    • /
    • pp.37-44
    • /
    • 2002
  • Automatic text classification is a task of assigning predefined categories to free text documents. Its importance is increased to organize and manage a huge amount of text data. There have been some researches on automatic text classification based on machine learning techniques. While most of them was focused on proposal of a new machine learning methods and cross evaluation between other systems, a through evaluation or optimization of a method has been rarely been done. In this paper, we propose an improving method of kNN-based Korean text classification system using heuristic informations about decision function, the number of nearest neighbor, and feature selection method. Experimental results showed that the system with similarity-weighted decision function, global method in considering neighbors, and DF/ICF feature selection was more accurate than simple kNN-based classifier. Also, we found out that the performance of the local method with well chosen k value was as high as that of the global method with much computational costs.

  • PDF

Structural failure classification for reinforced concrete buildings using trained neural network based multi-objective genetic algorithm

  • Chatterjee, Sankhadeep;Sarkar, Sarbartha;Hore, Sirshendu;Dey, Nilanjan;Ashour, Amira S.;Shi, Fuqian;Le, Dac-Nhuong
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.429-438
    • /
    • 2017
  • Structural design has an imperative role in deciding the failure possibility of a Reinforced Concrete (RC) structure. Recent research works achieved the goal of predicting the structural failure of the RC structure with the assistance of machine learning techniques. Previously, the Artificial Neural Network (ANN) has been trained supported by Particle Swarm Optimization (PSO) to classify RC structures with reasonable accuracy. Though, keeping in mind the sensitivity in predicting the structural failure, more accurate models are still absent in the context of Machine Learning. Since the efficiency of multi-objective optimization over single objective optimization techniques is well established. Thus, the motivation of the current work is to employ a Multi-objective Genetic Algorithm (MOGA) to train the Neural Network (NN) based model. In the present work, the NN has been trained with MOGA to minimize the Root Mean Squared Error (RMSE) and Maximum Error (ME) toward optimizing the weight vector of the NN. The model has been tested by using a dataset consisting of 150 RC structure buildings. The proposed NN-MOGA based model has been compared with Multi-layer perceptron-feed-forward network (MLP-FFN) and NN-PSO based models in terms of several performance metrics. Experimental results suggested that the NN-MOGA has outperformed other existing well known classifiers with a reasonable improvement over them. Meanwhile, the proposed NN-MOGA achieved the superior accuracy of 93.33% and F-measure of 94.44%, which is superior to the other classifiers in the present study.

Fuzzy Kernel K-Nearest Neighbor Algorithm for Image Segmentation (영상 분할을 위한 퍼지 커널 K-nearest neighbor 알고리즘)

  • Choi Byung-In;Rhee Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.828-833
    • /
    • 2005
  • Kernel methods have shown to improve the performance of conventional linear classification algorithms for complex distributed data sets, as mapping the data in input space into a higher dimensional feature space(7). In this paper, we propose a fuzzy kernel K-nearest neighbor(fuzzy kernel K-NN) algorithm, which applies the distance measure in feature space based on kernel functions to the fuzzy K-nearest neighbor(fuzzy K-NN) algorithm. In doing so, the proposed algorithm can enhance the Performance of the conventional algorithm, by choosing an appropriate kernel function. Results on several data sets and segmentation results for real images are given to show the validity of our proposed algorithm.

Feature Selection for Multiple K-Nearest Neighbor classifiers using GAVaPS (GAVaPS를 이용한 다수 K-Nearest Neighbor classifier들의 Feature 선택)

  • Lee, Hee-Sung;Lee, Jae-Hun;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.871-875
    • /
    • 2008
  • This paper deals with the feature selection for multiple k-nearest neighbor (k-NN) classifiers using Genetic Algorithm with Varying reputation Size (GAVaPS). Because we use multiple k-NN classifiers, the feature selection problem for them is vary hard and has large search region. To solve this problem, we employ the GAVaPS which outperforms comparison with simple genetic algorithm (SGA). Further, we propose the efficient combining method for multiple k-NN classifiers using GAVaPS. Experiments are performed to demonstrate the efficiency of the proposed method.

Analysis of Dimensionality Reduction Methods Through Epileptic EEG Feature Selection for Machine Learning in BCI (BCI에서 기계 학습을 위한 간질 뇌파 특징 선택을 통한 차원 감소 방법 분석)

  • Tong, Yang;Aliyu, Ibrahim;Lim, Chang-Gyoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1333-1342
    • /
    • 2018
  • Until now, Electroencephalography(: EEG) has been the most important and convenient method for the diagnosis and treatment of epilepsy. However, it is difficult to identify the wave characteristics of an epileptic EEG signals because it is very weak, non-stationary and has strong background noise. In this paper, we analyse the effect of dimensionality reduction methods on Epileptic EEG feature selection and classification. Three dimensionality reduction methods: Pincipal Component Analysis(: PCA), Kernel Principal Component Analysis(: KPCA) and Linear Discriminant Analysis(: LDA) were investigated. The performance of each method was evaluated by using Support Vector Machine SVM, Logistic Regression(: LR), K-Nearestneighbor(: K-NN), Decision Tree(: DR) and Random Forest(: RF). From the experimental result, PCA recorded 75% of highest accuracy in SVM, LR and K-NN. KPCA recorded 85% of best performance in SVM and K-KNN while LDA achieved 100% accuracy in K-NN. Thus, LDA dimensionality reduction is found to provide the best classification result for epileptic EEG signal.