• Title/Summary/Keyword: k-NN Classification

Search Result 192, Processing Time 0.026 seconds

Phoneme distribution and phonological processes of orthographic and pronounced phrasal words in light of syllable structure in the Seoul Corpus (음절구조로 본 서울코퍼스의 글 어절과 말 어절의 음소분포와 음운변동)

  • Yang, Byunggon
    • Phonetics and Speech Sciences
    • /
    • v.8 no.3
    • /
    • pp.1-9
    • /
    • 2016
  • This paper investigated the phoneme distribution and phonological processes of orthographic and pronounced phrasal words in light of syllable structure in the Seoul Corpus in order to provide linguists and phoneticians with a clearer understanding of the Korean language system. To achieve the goal, the phrasal words were extracted from the transcribed label scripts of the Seoul Corpus using Praat. Following this, the onsets, peaks, codas and syllable types of the phrasal words were analyzed using an R script. Results revealed that k0 was most frequently used as an onset in both orthographic and pronounced phrasal words. Also, aa was the most favored vowel in the Korean syllable peak with fewer phonological processes in its pronounced form. The total proportion of all diphthongs according to the frequency of the peaks in the orthographic phrasal words was 8.8%, which was almost double those found in the pronounced phrasal words. For the codas, nn accounted for 34.4% of the total pronounced phrasal words and was the varied form. From syllable type classification of the Corpus, CV appeared to be the most frequent type followed by CVC, V, and VC from the orthographic forms. Overall, the onsets were more prevalent in the pronunciation more than the codas. From the results, this paper concluded that an analysis of phoneme distribution and phonological processes in light of syllable structure can contribute greatly to the understanding of the phonology of spoken Korean.

Improved Feature Selection Techniques for Image Retrieval based on Metaheuristic Optimization

  • Johari, Punit Kumar;Gupta, Rajendra Kumar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.40-48
    • /
    • 2021
  • Content-Based Image Retrieval (CBIR) system plays a vital role to retrieve the relevant images as per the user perception from the huge database is a challenging task. Images are represented is to employ a combination of low-level features as per their visual content to form a feature vector. To reduce the search time of a large database while retrieving images, a novel image retrieval technique based on feature dimensionality reduction is being proposed with the exploit of metaheuristic optimization techniques based on Genetic Algorithm (GA), Extended Binary Cuckoo Search (EBCS) and Whale Optimization Algorithm (WOA). Each image in the database is indexed using a feature vector comprising of fuzzified based color histogram descriptor for color and Median binary pattern were derived in the color space from HSI for texture feature variants respectively. Finally, results are being compared in terms of Precision, Recall, F-measure, Accuracy, and error rate with benchmark classification algorithms (Linear discriminant analysis, CatBoost, Extra Trees, Random Forest, Naive Bayes, light gradient boosting, Extreme gradient boosting, k-NN, and Ridge) to validate the efficiency of the proposed approach. Finally, a ranking of the techniques using TOPSIS has been considered choosing the best feature selection technique based on different model parameters.

A Personalized Retrieval System Based on Classification and User Query (분류와 사용자 질의어 정보에 기반한 개인화 검색 시스템)

  • Kim, Kwang-Young;Shim, Kang-Seop;Kwak, Seung-Jin
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.43 no.3
    • /
    • pp.163-180
    • /
    • 2009
  • In this paper, we describe a developmental system for establishing personal information tendency based on user queries. For each query, the system classified it based on the category information using a kNN classifier. As category information, we used DDC field which is already assigned to each record in the database. The system accumulates category information for all user queries and the user's personalized feature for the target database. We then developed a personalized retrieval system reflecting the personalized feature to produce search result. Our system re-ranks the result documents by adding more weights to the documents for which categories match with the user's personalized feature. By using user's tendency information, the ambiguity problem of the word could be solved. In this paper, we conducted experiments for personalized search and word sense disambiguation (WSD) on a collection of Korean journal articles of science and technology arena. Our experimental result and user's evaluation show that the performance of the personalized search system and WSD is proved to be useful for actual field services.

Diagnosis of Diabetes Using Voltage Analysis Based on EIS (Electro Interstitial Scan) (EIS 기반 전압신호 분석을 통한 당뇨병 진단 가능성 평가)

  • Bae, Jang-Han;Kim, Soochan;Kaewkannate, Kanitthika;Jun, Min-Ho;Kim, Jaeuk U.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.114-122
    • /
    • 2016
  • EIS (Electro interstitial scan) is a non-invasive and simple method to find the physio-pathological information inferred by electric current response with respect to low direct current applied between remote sites of the body. Although a few EIS-based devices for diagnosing diabetes were commercialized, they were not successful in offering clinical validity nor in confirming diagnostic principle. In this study, we measured the voltage responses of diabetic patients and normal subjects with a commercialized EIS device to test the usefulness of EIS in screening diabetes. For this purpose, voltage was measured between pairs of electrodes contacted at both palm, both soles of the feet and left and right forehead above both eyes. After feature extraction of voltage signals, the AUC (area under the curve) between the two groups was calculated and we found that seven variables were appropriately shown above 60% of accuracy. In addition, we applied the k-NN (k-nearest neighbors) method and found that the accuracy of classification between the two groups reached the accuracy of 76.2%. This result implies that the voltage response analysis based on EIS has potential as a diabetics screening method.

Comparison of Prediction Accuracy Between Classification and Convolution Algorithm in Fault Diagnosis of Rotatory Machines at Varying Speed (회전수가 변하는 기기의 고장진단에 있어서 특성 기반 분류와 합성곱 기반 알고리즘의 예측 정확도 비교)

  • Moon, Ki-Yeong;Kim, Hyung-Jin;Hwang, Se-Yun;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.280-288
    • /
    • 2022
  • This study examined the diagnostics of abnormalities and faults of equipment, whose rotational speed changes even during regular operation. The purpose of this study was to suggest a procedure that can properly apply machine learning to the time series data, comprising non-stationary characteristics as the rotational speed changes. Anomaly and fault diagnosis was performed using machine learning: k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), and Random Forest. To compare the diagnostic accuracy, an autoencoder was used for anomaly detection and a convolution based Conv1D was additionally used for fault diagnosis. Feature vectors comprising statistical and frequency attributes were extracted, and normalization & dimensional reduction were applied to the extracted feature vectors. Changes in the diagnostic accuracy of machine learning according to feature selection, normalization, and dimensional reduction are explained. The hyperparameter optimization process and the layered structure are also described for each algorithm. Finally, results show that machine learning can accurately diagnose the failure of a variable-rotation machine under the appropriate feature treatment, although the convolution algorithms have been widely applied to the considered problem.

The Design of Feature Selection Classifier based on Physiological Signal for Emotion Detection (감성판별을 위한 생체신호기반 특징선택 분류기 설계)

  • Lee, JeeEun;Yoo, Sun K.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.206-216
    • /
    • 2013
  • The emotion plays a critical role in human's daily life including learning, action, decision and communication. In this paper, emotion discrimination classifier is designed to reduce system complexity through reduced selection of dominant features from biosignals. The photoplethysmography(PPG), skin temperature, skin conductance, fontal and parietal electroencephalography(EEG) signals were measured during 4 types of movie watching associated with the induction of neutral, sad, fear joy emotions. The genetic algorithm with support vector machine(SVM) based fitness function was designed to determine dominant features among 24 parameters extracted from measured biosignals. It shows maximum classification accuracy of 96.4%, which is 17% higher than that of SVM alone. The minimum error features selected are the mean and NN50 of heart rate variability from PPG signal, the mean of PPG induced pulse transit time, the mean of skin resistance, and ${\delta}$ and ${\beta}$ frequency band powers of parietal EEG. The combination of parietal EEG, PPG, and skin resistance is recommendable in high accuracy instrumentation, while the combinational use of PPG and skin conductance(79% accuracy) is affordable in simplified instrumentation.

Classification of Negative Emotions based on Arousal Score and Physiological Signals using Neural Network (신경망을 이용한 다중 심리-생체 정보 기반의 부정 감성 분류)

  • Kim, Ahyoung;Jang, Eun-Hye;Sohn, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.21 no.1
    • /
    • pp.177-186
    • /
    • 2018
  • The mechanism of emotion is complex and influenced by a variety of factors, so that it is crucial to analyze emotion in broad and diversified perspectives. In this study, we classified neutral and negative emotions(sadness, fear, surprise) using arousal evaluation, which is one of the psychological evaluation scales, as well as physiological signals. We have not only revealed the difference between physiological signals coupled to the emotions, but also assessed how accurate these emotions can be classified by our emotional recognizer based on neural network algorithm. A total of 146 participants(mean age $20.1{\pm}4.0$, male 41%) were emotionally stimulated while their physiological signals of the electrocardiogram, blood flow, and dermal activity were recorded. In addition, the participants evaluated their psychological states on the emotional rating scale in response to the emotional stimuli. Heart rate(HR), standard deviation(SDNN), blood flow(BVP), pulse wave transmission time(PTT), skin conduction level(SCL) and skin conduction response(SCR) were calculated before and after the emotional stimulation. As a result, the difference between physiological responses was verified corresponding to the emotions, and the highest emotion classification performance of 86.9% was obtained using the combined analysis of arousal and physiological features. This study suggests that negative emotion can be categorized by psychological and physiological evaluation along with the application of machine learning algorithm, which can contribute to the science and technology of detecting human emotion.

Hand Gesture Recognition Regardless of Sensor Misplacement for Circular EMG Sensor Array System (원형 근전도 센서 어레이 시스템의 센서 틀어짐에 강인한 손 제스쳐 인식)

  • Joo, SeongSoo;Park, HoonKi;Kim, InYoung;Lee, JongShill
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.4
    • /
    • pp.371-376
    • /
    • 2017
  • In this paper, we propose an algorithm that can recognize the pattern regardless of the sensor position when performing EMG pattern recognition using circular EMG system equipment. Fourteen features were extracted by using the data obtained by measuring the eight channel EMG signals of six motions for 1 second. In addition, 112 features extracted from 8 channels were analyzed to perform principal component analysis, and only the data with high influence was cut out to 8 input signals. All experiments were performed using k-NN classifier and data was verified using 5-fold cross validation. When learning data in machine learning, the results vary greatly depending on what data is learned. EMG Accuracy of 99.3% was confirmed when using the learning data used in the previous studies. However, even if the position of the sensor was changed by only 22.5 degrees, it was clearly dropped to 67.28% accuracy. The accuracy of the proposed method is 98% and the accuracy of the proposed method is about 98% even if the sensor position is changed. Using these results, it is expected that the convenience of the users using the circular EMG system can be greatly increased.

The PIC Bumper Beam Design Method with Machine Learning Technique (머신 러닝 기법을 이용한 PIC 범퍼 빔 설계 방법)

  • Ham, Seokwoo;Ji, Seungmin;Cheon, Seong S.
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.317-321
    • /
    • 2022
  • In this study, the PIC design method with machine learning that automatically assigning different stacking sequences according to loading types was applied bumper beam. The input value and labels of the training data for applying machine learning were defined as coordinates and loading types of reference elements that are part of the total elements, respectively. In order to compare the 2D and 3D implementation method, which are methods of representing coordinate value, training data were generated, and machine learning models were trained with each method. The 2D implementation method is divided FE model into each face and generating learning data and training machine learning models accordingly. The 3D implementation method is training one machine learning model by generating training data from the entire finite element model. The hyperparameter were tuned to optimal values through the Bayesian algorithm, and the k-NN classification method showed the highest prediction rate and AUC-ROC among the tuned models. The 3D implementation method revealed higher performance than the 2D implementation method. The loading type data predicted through the machine learning model were mapped to the finite element model and comparatively verified through FE analysis. It was found that 3D implementation PIC bumper beam was superior to 2D implementation and uni-stacking sequence composite bumper.

Recognition of damage pattern and evolution in CFRP cable with a novel bonding anchorage by acoustic emission

  • Wu, Jingyu;Lan, Chengming;Xian, Guijun;Li, Hui
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.421-433
    • /
    • 2018
  • Carbon fiber reinforced polymer (CFRP) cable has good mechanical properties and corrosion resistance. However, the anchorage of CFRP cable is a big issue due to the anisotropic property of CFRP material. In this article, a high-efficient bonding anchorage with novel configuration is developed for CFRP cables. The acoustic emission (AE) technique is employed to evaluate the performance of anchorage in the fatigue test and post-fatigue ultimate bearing capacity test. The obtained AE signals are analyzed by using a combination of unsupervised K-means clustering and supervised K-nearest neighbor classification (K-NN) for quantifying the performance of the anchorage and damage evolutions. An AE feature vector (including both frequency and energy characteristics of AE signal) for clustering analysis is proposed and the under-sampling approaches are employed to regress the influence of the imbalanced classes distribution in AE dataset for improving clustering quality. The results indicate that four classes exist in AE dataset, which correspond to the shear deformation of potting compound, matrix cracking, fiber-matrix debonding and fiber fracture in CFRP bars. The AE intensity released by the deformation of potting compound is very slight during the whole loading process and no obvious premature damage observed in CFRP bars aroused by anchorage effect at relative low stress level, indicating the anchorage configuration in this study is reliable.