• 제목/요약/키워드: k-NN Classification

검색결과 192건 처리시간 0.041초

An Approach of Dimension Reduction in k-Nearest Neighbor Based Short-term Load Forecasting

  • Chu, FaZheng;Jung, Sung-Hwan
    • 한국멀티미디어학회논문지
    • /
    • 제20권9호
    • /
    • pp.1567-1573
    • /
    • 2017
  • The k-nearest neighbor (k-NN) algorithm is one of the most widely used benchmark algorithm in classification. Nowadays it has been further applied to predict time series. However, one of the main concerns of the algorithm applied on short-term electricity load forecasting is high computational burden. In the paper, we propose an approach of dimension reduction that follows the principles of highlighting the temperature effect on electricity load data series. The results show the proposed approach is able to reduce the dimension of the data around 30%. Moreover, with temperature effect highlighting, the approach will contribute to finding similar days accurately, and then raise forecasting accuracy slightly.

문서분류 기법을 이용한 웹 문서 분류의 실험적 비교 (Empirical Analysis & Comparisons of Web Document Classification Methods)

  • 이상순;최정민;장근;이병수
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.154-156
    • /
    • 2002
  • 인터넷의 발전으로 우리는 많은 정보와 지식을 인터넷에서 제공받을 수 있으며 HTML, 뉴스그룹 문서, 전자메일 등의 웹 문서로 존재한다. 이러한 웹 문서들은 여러가지 목적으로 분류해야 할 필요가 있으며 이를 적용한 시스템으로는 Personal WebWatcher, InfoFinder, Webby, NewT 등이 있다. 웹 문서 분류 시스템에서는 문서분류 기법을 사용하여 웹 문서의 소속 클래스를 결정하는데 문서분류를 위한 기법 중 대표적인 알고리즘으로 나이브 베이지안(Naive Baysian), k-NN(k-Nearest Neighbor), TFIDF(Term Frequency Inverse Document Frequency)방법을 이용한다. 본 논문에서는 웹 문서를 대상으로 이러한 문서분류 알고리즘 각각의 성능을 비교 및 평가하고자 한다.

  • PDF

다중 등급 유해문서 분류를 위한 워크벤치 프로그램 구현 (Implementation of Workbench Program for Multi-Level Harmful Document Classification)

  • 이원휘;조윤정;정성종;안동언
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.691-692
    • /
    • 2008
  • 유해 문서를 분류하기 위한 고정된 등급에 의한 분류가 아닌 사용자의 필요에 의해 다양한 등급으로 분류할 수 있는 분류기를 구현하였다. 자질 생성을 위해 ${\chi}^2$, IG, DF, ICF를 이용하였으며, 분류를 위해 나이브 베이지언, C4.5, kNN, SVM을 이용하였다.

  • PDF

입력패턴과 그 k 근방 원형상에서 최근접 결정법칙에 의한 패턴식별 (Pattern Classification using the Nearest Desion Method in Input Pattern and its k Neighbor Prototypes)

  • 김응규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1853-1854
    • /
    • 2008
  • 본 논문에서는 입력패턴과 그 k 근방 원형상에 잇어서 노름 평균에 기초한 최근접 결정법칙에 의한 패턴식별법을 제안한다. 이 방법은 식별경계 근방의 원형상에 있어서 분산의 차에 의한 가중치를 고려하기 때문에 패턴의 수가 적을 때 입력패턴을 정확하게 분류할 때 사용될 수 있다. 본 방법의 유효성을 평가하기 위해 인공적인 패턴과 실제패턴에 대해 k-NN 등 기존방법과 제안하는 방법을 적용하여 식별률에 의한 평가를 행한 결과, 특히 원형상의 분포가 희박한 경우 제안하는 방법이 기존방법에 비해 높은 식별률을 나타냈다.

  • PDF

Mongolian Traditional Stamp Recognition using Scalable kNN

  • Gantuya., P;Mungunshagai., B;Suvdaa., B
    • International journal of advanced smart convergence
    • /
    • 제4권2호
    • /
    • pp.170-176
    • /
    • 2015
  • The stamp is one of the crucial information of traditional historical and cultural for nations. In this paper, we purpose to detect official stamps from scanned document and recognize the Mongolian traditional, historical stamps. Therefore we performed following steps: first, we detect official stamps from scanned document based on red-color segmentation and document standard. Then we collected 234 traditional stamp images with 6 classes and 100 official stamp images from scanned document images. Also we implemented the processing algorithms for noise removing, resize and reshape etc. Finally, we proposed a new scale invariant classification algorithm based on KNN (k-nearest neighbor). In the experimental result, our proposed a method had shown proper recognition rate.

Random Forest 분류기와 Bag-of-Feature 특징 히스토그램을 이용한 의료영상 자동 분류 및 검색 (Medical Image Classification and Retrieval Using BoF Feature Histogram with Random Forest Classifier)

  • 손정은;고병철;남재열
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권4호
    • /
    • pp.273-280
    • /
    • 2013
  • 본 논문에서는 의료영상의 특성을 반영하여 픽셀 그래디언트의 방향 값을 특징으로 하는 OCS-LBP (Oriented Center Symmetric Local Binary Patterns) 특징을 개발하고 BoF(Bag-of-Feature)와 Random Forest 분류기를 이용한 영상 검색 방법을 제안한다. 학습영상에서 추출된 특징 값은 code book 으로 군집화 되고, 각 영상들은 code book을 통해 의미 있는 새로운 차원인 BoF특징으로 변환된다. 이렇게 추출된 BoF특징은 Random Forest 분류기에 적용되고 학습된 분류기에 의해 유사한 특성을 갖는 N개의 클래스별로 분류되게 된다. 질의 영상이 입력되면 동일한 OCS-LBP특징이 추출되고 code book을 통해 BoF특징이 추출된다. 전통적인 내용기반 영상검색과는 다르게, 본 논문에서는 질의 영상에서 추출된 BoF특징이 학습된 Random Forest에 적용되어 가장 유사한 K-근접 이웃 (K-nearest neighbor) 클래스들을 선택하고 선택된 클래스들에 포함된 영상들에 대해서만 질의 영상과의 BoF 유사도 측정을 통해 최종 유사한 영상을 검색하게 된다. 실험결과에서 본 논문에서 제안하는 방법은 빠르고 우수한 검색 성능을 보여 주었다.

분류 알고리즘과 NCA를 활용한 기계학습 기반 구조건전성 모니터링 시스템 (Machine Learning Based Structural Health Monitoring System using Classification and NCA)

  • 신창교;권현석;박유림;김천곤
    • 한국항행학회논문지
    • /
    • 제23권1호
    • /
    • pp.84-89
    • /
    • 2019
  • 본 연구는 복합재 항공기의 비행 데이터를 활용한 기계학습 기반 구조건전성 모니터링 시스템 연구의 예비 연구이다. 본 연구에서는 구조건전성 모니터링에 이용되기에 가장 적합한 기계학습 알고리즘을 선별하고, 실 기체 데이터에 대한 적용을 위해 차원 축소를 수행하였다. 이를 위해 외팔보를 통해 모사된 항공기 날개 구조와 부가 질량을 통해 손상 모사 실험을 진행하고, 분류 알고리즘을 통해 데이터를 손상의 위치와 정도에 따라 구분하였다. 이를 위해 FBG (fiber bragg grating) 센서를 부착한 외팔보의 진동 실험을 통해 정상상태와 12개의 손상상태에 대한 데이터를 취득하고, MATLAB 환경에서 tree, discriminant, SVM (support vector machine), kNN, ensemble 알고리즘의 비교와 파라미터 튜닝을 통해 가장 적합한 알고리즘을 도출하였다. 또한 NCA (neighborhood component analysis)를 이용한 특징 선택을 통해, 실 기체에서 나올 수 있는 고차원 데이터의 관리를 위해 필요한 차원 축소를 수행하였다. 그 결과, quadratic SVM이 NCA를 적용하지 않은 모델에서 98.7%, NCA를 적용한 모델에서 95.9%로 가장 높은 정답률을 보였다. 또한 NCA 적용 후 모델의 예측 속도, 학습 시간, 용량이 모두 향상되었다.

움직임 실루엣 영상의 일반적인 표현 방식에 대한 연구 (A General Representation of Motion Silhouette Image: Generic Motion Silhouette Image(GMSI))

  • 홍성준;이희성;김은태
    • 제어로봇시스템학회논문지
    • /
    • 제13권8호
    • /
    • pp.749-753
    • /
    • 2007
  • In this paper, a generalized version of the Motion Silhouette Image(MSI) called the Generic Motion Silhouette Image (GMSI) is proposed for gait recognition. The GMSI is a gray-level image and involves the spatiotemporal information of individual motion. The GMSI not only generalizes the MSI but also reflects a flexible feature of a gait sequence. Along with the GMSI, we use the Principal Component Analysis(PCA) to reduce the dimensionality of the GMSI and the Nearest Neighbor(NN) for classification. We apply the proposed feature to NLPR database and compare it with the conventional MSI. Experimental results show the effectiveness of the GMSI.

최적화 사례기반추론을 이용한 통신시장 고객관계관리 (Customer Relationship Management in Telecom Market using an Optimized Case-based Reasoning)

  • 안현철;김경재
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.285-288
    • /
    • 2006
  • Most previous studies on improving the effectiveness of CBR have focused on the similarity function aspect or optimization of case features and their weights. However, according to some of the prior research, finding the optimal k parameter for the k-nearest neighbor (k-NN) is also crucial for improving the performance of the CBR system. Nonetheless, there have been few attempts to optimize the number of neighbors, especially using artificial intelligence (AI) techniques. In this study, we introduce a genetic algorithm (GA) to optimize the number of neighbors that combine, as well as the weight of each feature. The new model is applied to the real-world case of a major telecommunication company in Korea in order to build the prediction model for the customer profitability level. Experimental results show that our GA-optimized CBR approach outperforms other AI techniques for this mulriclass classification problem.

  • PDF

사물인터넷 관련 버그 정정을 위한 버그리포트 속성 분석 (Bug Reports Attribute Analysis for Fixing The Bug on The Internet of Things)

  • 권기문;정성순
    • 전자공학회논문지
    • /
    • 제52권5호
    • /
    • pp.235-241
    • /
    • 2015
  • 최근 사물인터넷과 관련된 연구와 산업이 급속히 발전하고 있다. 사물인터넷과 관련된 소프트웨어 개발 및 유지보수 활동에서 버그 정정은 큰 비중을 차지하는 활동이다. 본 논문에서는 사물인터넷과 관련된 버그를 정정하는데 소요되는 시간을 분석함으로써 버그 정정 시간에 영향을 미칠 수 있는 속성이 무엇인지 분석한다. 버그 리포트가 제공하는 속성 정보에 따라 k-NN 분류 방법을 사용하여 버그 리포트를 분류하고 유사한 속성을 가진 버그 리포트를 선별한다. 유사한 버그 리포트의 버그 정정 시간을 계산하여 새로운 버그의 정정 시간을 예측한다. 예측 정확도에 따라 버그 정정 시간에 영향을 미치는 속성 중 운영체제(os), 컴포넌트, 리포터, 할당자(assignee) 속성을 사용했을 때 버그 정정 시간 예측에 가장 좋은 정확도를 나타냈다.