• Title/Summary/Keyword: k-최근접 이웃

Search Result 145, Processing Time 0.029 seconds

A Hashing Method Using PCA-based Clustering (PCA 기반 군집화를 이용한 해슁 기법)

  • Park, Cheong Hee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.6
    • /
    • pp.215-218
    • /
    • 2014
  • In hashing-based methods for approximate nearest neighbors(ANN) search, by mapping data points to k-bit binary codes, nearest neighbors are searched in a binary embedding space. In this paper, we present a hashing method using a PCA-based clustering method, Principal Direction Divisive Partitioning(PDDP). PDDP is a clustering method which repeatedly partitions the cluster with the largest variance into two clusters by using the first principal direction. The proposed hashing method utilizes the first principal direction as a projective direction for binary coding. Experimental results demonstrate that the proposed method is competitive compared with other hashing methods.

Machine Learning Model for Predicting the Residual Useful Lifetime of the CNC Milling Insert (공작기계의 절삭용 인서트의 잔여 유효 수명 예측 모형)

  • Won-Gun Choi;Heungseob Kim;Bong Jin Ko
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.111-118
    • /
    • 2023
  • For the implementation of a smart factory, it is necessary to collect data by connecting various sensors and devices in the manufacturing environment and to diagnose or predict failures in production facilities through data analysis. In this paper, to predict the residual useful lifetime of milling insert used for machining products in CNC machine, weight k-NN algorithm, Decision Tree, SVR, XGBoost, Random forest, 1D-CNN, and frequency spectrum based on vibration signal are investigated. As the results of the paper, the frequency spectrum does not provide a reliable criterion for an accurate prediction of the residual useful lifetime of an insert. And the weighted k-nearest neighbor algorithm performed best with an MAE of 0.0013, MSE of 0.004, and RMSE of 0.0192. This is an error of 0.001 seconds of the remaining useful lifetime of the insert predicted by the weighted-nearest neighbor algorithm, and it is considered to be a level that can be applied to actual industrial sites.

Efficient Nearest Neighbor Search on Moving Object Trajectories (이동객체궤적에 대한 효율적인 최근접이웃검색)

  • Kim, Gyu-Jae;Park, Young-Hee;Cho, Woo-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.2919-2925
    • /
    • 2014
  • Because of the rapid growth of mobile communication and wireless communication, Location-based services are handled in many applications. So, the management and analysis of spatio-temporal data are a hot issue in database research. Index structure and query processing of such contents are very important for these applications. This paper addressees algorithms that make index structure by using Douglas-Peucker Algorithm and process nearest neighbor search query efficiently on moving objects trajectories. We compare and analyze our algorithms by experiments. Our algorithms make small size of index structure and process the query more efficiently.

A Movie Recommender Systems using Personal Disposition in Hadoop (하둡에서 개인 성향을 이용한 영화 추천시스템)

  • Kim, Sun-Ho;Kim, Se-Jun;Mo, Ha-Young;Kim, Chae-Reen;Park, Gyu-Tae;Park, Doo-Soon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.642-644
    • /
    • 2014
  • 정보의 폭발적인 증가로 인해 사용자들은 오히려 원하는 정보를 빠른 시간에 얻는 것이 힘들어졌다. 따라서 이 문제를 해결하기 위한 다양한 방식의 새로운 서비스들이 제공되고 있다. 추천 시스템 중에서 영화를 추천해주는 방법에는 사용되는 알고리즘에는 협업필터링 방법이 가장 성공한 알고리즘으로 사용되고 있다. 협업 필터링 방법은 사용자가 자발적으로 입력한 선호도 평가치를 바탕으로 추천 하고자 하는 사용자와 취향이 비슷하다고 판단되는 사람들 즉, 최근접 이웃을 구하고 최근접 이웃의 선호도 평가치를 바탕으로 사용자에게 영화를 추천을 해주는 기법이다. 그러나 협업 필터링에는 몇 가지 대표적인 문제점이 있으며 희박성 및 확장성, 투명성이 있다. 본 논문에서는 영화 추천 시스템에서의 협업필터링의 희박성 문제를 보완하고자 개개인의 성향을 반영하여 효율이 좋은 추천 방법을 제안하고 하둡에서 성능평가를 하였다.

A study on the spatial neighborhood in spatial regression analysis (공간이웃정보를 고려한 공간회귀분석)

  • Kim, Sujung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.3
    • /
    • pp.505-513
    • /
    • 2017
  • Recently, numerous small area estimation studies have been conducted to obtain more detailed and accurate estimation results. Most of these studies have employed spatial regression models, which require a clear definition of spatial neighborhoods. In this study, we introduce the Delaunay triangulation as a method to define spatial neighborhood, and compare this method with the k-nearest neighbor method. A simulation was conducted to determine which of the two methods is more efficient in defining spatial neighborhood, and we demonstrate the performance of the proposed method using a land price data.

Rejection Scheme of Nearest Neighbor Classifier for Diagnosis of Rotating Machine Fault (회전 기계 고장 진단을 위한 최근접 이웃 분류기의 기각 전략)

  • Choe, Yeong-Il;Park, Gwang-Ho;Gi, Chang-Du
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.52-58
    • /
    • 2002
  • The purpose of condition monitoring and fault diagnosis is to detect faults occurring in machinery in order to improve the level of safety in plants and reduce operational and maintenance costs. The recognition performance is important not only to gain a high recognition rate bur a1so to minimize the diagnosis failures error rate by using off effective rejection module. We examined the problem of performance evaluation for the rejection scheme considering the accuracy of individual c1asses in order to increase the recognition performance. We use the Smith's method among the previous studies related to rejection method. Nearest neighbor classifier is used for classifying the machine conditions from the vibration signals. The experiment results for the performance evaluation of rejection show the modified optimum rejection method is superior to others.

Daily rainfall simulation considering distribution of rainfall events in each duration (강우사상의 지속기간별 분포 특성을 고려한 일강우 모의)

  • Jung, Jaewon;Bae, Younghye;Kim, Kyunghun;Han, Daegun;Kim, Hung Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.361-361
    • /
    • 2019
  • 기존의 Markov Chain 모형으로 일강우량 모의시에 강우의 발생여부를 모의하고 강우일의 강우량은 Monte Carlo 시뮬레이션을 통해 일강우 분포 특성에 맞는 분포형에서 랜덤으로 강우량을 추정하는 것이 일반적이다. 이때 강우 지속기간에 따른 강도 및 강우의 시간별 분포 등의 강우 사상의 특성을 반영할 수 없다는 한계가 있다. 본 연구에서는 이를 개선하기 위해 강우 사상을 지속기간에 따라 강우량을 추정하였다. 즉 강우 사상의 강우 지속일별로 총강우량의 분포형을 비매개변수 추정이 가능한 핵밀도추정(Kernel Density Estimation, KDE)를 적용하여 각각 추정하고, 강우가 지속될 경우에 지속일별로 해당하는 분포형에서 강우량을 구하였다. 각 강우사상에 대해 추정된 총 강우량은 k-최근접 이웃 알고리즘(k-Nearest Neighbor algorithm, KNN)을 통해 관측 강우자료에서 가장 유사한 강우량을 가지는 강우사상의 강우량 일분포 형태에 따라 각 일강우량으로 분배하였다. 본 연구는 기존의 강우량 추정 방법의 한계점을 개선하고자 하였으며, 연구 결과는 미래 강우에 대한 예측에도 활용될 수 있으며 수자원 설계에 있어서 기초자료로 활용될 수 있을 것으로 기대된다.

  • PDF

A Comparison of Distance Metric Learning Methods for Face Recognition (얼굴인식을 위한 거리척도학습 방법 비교)

  • Suvdaa, Batsuri;Ko, Jae-Pil
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.6
    • /
    • pp.711-718
    • /
    • 2011
  • The k-Nearest Neighbor classifier that does not require a training phase is appropriate for a variable number of classes problem like face recognition, Recently distance metric learning methods that is trained with a given data set have reported the significant improvement of the kNN classifier. However, the performance of a distance metric learning method is variable for each application, In this paper, we focus on the face recognition and compare the performance of the state-of-the-art distance metric learning methods, Our experimental results on the public face databases demonstrate that the Mahalanobis distance metric based on PCA is still competitive with respect to both performance and time complexity in face recognition.

Classification of Korean Traditional Musical Instruments Using Feature Functions and k-nearest Neighbor Algorithm (특성함수 및 k-최근접이웃 알고리즘을 이용한 국악기 분류)

  • Kim Seok-Ho;Kwak Kyung-Sup;Kim Jae-Chun
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.3
    • /
    • pp.279-286
    • /
    • 2006
  • Classification method used in this paper is applied for the first time to Korean traditional music. Among the frequency distribution vectors, average peak value is suggested and proved effective comparing to previous classification success rate. Mean, variance, spectral centroid, average peak value and ZCR are used to classify Korean traditional musical instruments. To achieve Korean traditional instruments automatic classification, Spectral analysis is used. For the spectral domain, Various functions are introduced to extract features from the data files. k-NN classification algorithm is applied to experiments. Taegum, gayagum and violin are classified in accuracy of 94.44% which is higher than previous success rate 87%.

  • PDF

BIM Mesh Optimization Algorithm Using K-Nearest Neighbors for Augmented Reality Visualization (증강현실 시각화를 위해 K-최근접 이웃을 사용한 BIM 메쉬 경량화 알고리즘)

  • Pa, Pa Win Aung;Lee, Donghwan;Park, Jooyoung;Cho, Mingeon;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.249-256
    • /
    • 2022
  • Various studies are being actively conducted to show that the real-time visualization technology that combines BIM (Building Information Modeling) and AR (Augmented Reality) helps to increase construction management decision-making and processing efficiency. However, when large-capacity BIM data is projected into AR, there are various limitations such as data transmission and connection problems and the image cut-off issue. To improve the high efficiency of visualizing, a mesh optimization algorithm based on the k-nearest neighbors (KNN) classification framework to reconstruct BIM data is proposed in place of existing mesh optimization methods that are complicated and cannot adequately handle meshes with numerous boundaries of the 3D models. In the proposed algorithm, our target BIM model is optimized with the Unity C# code based on triangle centroid concepts and classified using the KNN. As a result, the algorithm can check the number of mesh vertices and triangles before and after optimization of the entire model and each structure. In addition, it is able to optimize the mesh vertices of the original model by approximately 56 % and the triangles by about 42 %. Moreover, compared to the original model, the optimized model shows no visual differences in the model elements and information, meaning that high-performance visualization can be expected when using AR devices.