• 제목/요약/키워드: k-근접 이웃

검색결과 35건 처리시간 0.021초

K 최대근접이웃 방법을 이용한 통행시간 예측에 대한 연구 (A Study of Travel Time Prediction using K-Nearest Neighborhood Method)

  • 임성한;이향미;박성룡;허태영
    • 응용통계연구
    • /
    • 제26권5호
    • /
    • pp.835-845
    • /
    • 2013
  • 통행시간은 교통정보 중에서 가장 대표적이고 이용자 선호도가 높은 정보이다. 본 연구에서는 일반국도를 대상으로 실시간 시스템에 적용 가능한 통행시간 예측 방법을 개발하고자 하였다. 통행시간 예측방법으로 비모수적 접근 방법인 K 최대근접이웃 방법을 적용하였다. K 최대근접이웃 방법은 데이터에 대한 특별한 가정이 필요 없고, 모수 추정 과정이 필요 없어 실시간 교통관리시스템에 적합하다. K 최대근접이웃 방법의 우수성을 평가하기 위해 교통 분야에서 많이 적용되고 있는 이력자료 평균방법과 칼만 필터방법을 선정하여 평균절대백분율오차와 변동계수를 통해 평가하였다. 평가 결과 K 최대근접이웃 방법이 이력자료 평균방법과 칼만 필터방법에 비해 우수한 것으로 분석되었다. 통행시간 정보 제공 시 본 연구에서 개발된 방법을 통해 도출된 통행시간과 구간검지기로부터 관측된 통행시간을 탄력적으로 적용함으로써 통행시간 정보의 신뢰도를 향상시킬 수 있을 것으로 기대된다.

근접 이웃 선정 협력적 필터링 추천시스템에서 이웃 선정 방법에 관한 연구 (A study on neighbor selection methods in k-NN collaborative filtering recommender system)

  • 이석준
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권5호
    • /
    • pp.809-818
    • /
    • 2009
  • 협력적 필터링 기법은 전자상거래에서 거래되는 아이템에 대하여 고객들이 평가한 선호 정보를 이용하여 특정 상품에 대한 선호도 예측 대상 고객의 선호도를 예측하는 기법이다. 협력적 필터링 기법을 통한 예측 정확도를 향상시키기 위해서는 예측에 이용할 수 있는 고객들의 선호 정보를 충분히 확보하여야 한다. 그러나 과도한 이웃 고객의 선호 정보는 오히려 예측 정확도에 부정적 영향을 미치며 또한 과소 정보 역시 예측 정확도 감소에 영향을 미칠 수 있다. 본 연구에서는 협력적 필터링 알고리즘 적용에 있어 k명의 근접 이웃을 결정하는 이웃 선정방법을 개선하였으며 개별 고객의 선호도 평가 정보를 이용하여 적정 이웃 수를 결정할 수 있는 방법을 제시한다. 본 연구의 결과는 근접 이웃 수 결정을 위한 기존 방법인 탐색적 방법을 개선함과 동시에 선호도 예측 정확도를 향상시키는데 유용한 방법을 제공할 수 있다.

  • PDF

k-근접 이웃 및 비전센서를 활용한 프리팹 강구조물 조립 성능 평가 기술 (Assembly Performance Evaluation for Prefabricated Steel Structures Using k-nearest Neighbor and Vision Sensor)

  • 방현태;유병준;전해민
    • 한국전산구조공학회논문집
    • /
    • 제35권5호
    • /
    • pp.259-266
    • /
    • 2022
  • 본 논문에서는 프리팹 구조물의 품질관리를 위한 딥러닝 및 비전센서 기반의 조립 성능 평가 모델을 개발하였다. 조립부 검출을 위해 인코더-디코더 형식의 네트워크와 수용 영역 블록 합성곱 모듈을 적용한 딥러닝 모델을 사용하였다. 검출된 조립부 영역 내의 볼트홀을 검출하고, 볼트홀의 위치 값을 산정하여 k-근접 이웃 기반 모델을 사용하여 조립 품질을 평가하였다. 제안된 기법의 성능을 검증하기 위해 조립부 모형을 3D 프린팅을 이용하여 제작하여 조립부 검출 및 조립 성능 예측 모델의 성능을 검증하였다. 성능 검증 결과 높은 정밀도로 조립부를 검출하였으며, 검출된 조립부내의 볼트홀의 위치를 바탕으로 프리팹 구조물의 조립 성능을 5% 이하의 판별 오차로 평가할 수 있음을 확인하였다.

칼라 이미지 스케일의 보간 (Interpolation of Color Image Scales)

  • 김성환;정성환;이준환
    • 감성과학
    • /
    • 제10권3호
    • /
    • pp.289-297
    • /
    • 2007
  • 칼라 이미지 스케일은 칼라 전문가들의 지식에 의해 획득되고, 형용사와 대응되는 칼라(들)을 선택하기 위해 동일한 형용사 이미지 스케일들에서 형용사들과 칼라를 표현한다. 이들은 이미지 스케일을 얻기 위한 실험과 통계분석의 어려움 때문에 일반적으로, 단지 제한된 수의 칼라들만이 이미지 스케일에 위치한다. 이는 칼라를 선택하는 과정을 비전문가에게 어렵게 만든다. 본 논문에서는 이미지 스케일에 따라 연속적인 칼라를 제공하는 퍼지 K-근접 이웃 보간 방법에 기초를 둔 칼라 이미지 스케일의 보간 방법을 제안한다. 실험의 결과들은 보간된 이미지 스케일은 칼라 선택 과정에 있어 실용적으로 유용하게 사용될 수 있을 것이라 본다.

  • PDF

k-NN 알고리즘을 활용한 단기 교통상황 예측: 서울시 도시고속도로 사례 (Short-term Traffic States Prediction Using k-Nearest Neighbor Algorithm: Focused on Urban Expressway in Seoul)

  • 김형주;박신형;장기태
    • 대한교통학회지
    • /
    • 제34권2호
    • /
    • pp.158-167
    • /
    • 2016
  • 본 연구는 실시간 자료를 기반으로 k-NN을 활용한 단기 교통상황 예측 시 각 단계별 세부절차 및 변수결정, 입력자료 구축 등의 각 단계별 잠재적 예측오차에 대한 원인분석 및 시사점 도출을 목적으로 한다. 다양한 단기 예측모형에 대한 선행연구 검토를 통하여 k-NN 모형의 유용성을 검토하였고 이에 대한 적용가능성을 분석하였다. 본 연구의 k-NN 모형은 이력자료 평활화 및 패턴DB 구축의 입력자료 부분, 실시간 자료와 과거 이력자료와의 유사성 측정 및 k 근접이웃 결정 등의 k-NN 알고리즘 부분, 그리고 예측 시간간격에 따른 출력결과 부분 등으로 구성되며 올림픽대로 김포방향 한강대교 남단~여의상류IC 구간을 대상으로 분석을 실시하였다. 교통자료의 불규칙 잡음으로 인하여 정확한 패턴매칭을 위해서 이력자료의 평활화를 실시하였으며, 이력자료 패턴 DB는 일반 및 이벤트 상황으로 구분하여 활용하였다. 최적의 시계열 자료 및 k 근접이웃 결정을 위해서 시행착오 방법을 적용하였으며, 단기 교통상황 예측 시 예측 시간간격이 증가할수록 예측오차가 증가하는 패턴, 그리고 교통상태가 급변하는 시점에서도 예측오차가 증가함을 알 수 있었다. 본 연구의 k-NN 모형에 대한 각 단계별 예측오차에 대한 원인을 분석하여 개선방향을 제시함으로써 향후 신뢰성 있는 단기 교통상황예측 정보제공 및 시스템에 활용이 가능할 것으로 판단된다.

Efficient Processing of k-Farthest Neighbor Queries for Road Networks

  • Kim, Taelee;Cho, Hyung-Ju;Hong, Hee Ju;Nam, Hyogeun;Cho, Hyejun;Do, Gyung Yoon;Jeon, Pilkyu
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권10호
    • /
    • pp.79-89
    • /
    • 2019
  • 본 연구에서는 도로 네트워크에서 k-최원접 이웃 검색을 위한 효율적인 FANS(k-FArthest Neighbor Search) 알고리즘을 제안한다. 양의 정수 k, 질의 객체 q, 일련의 데이터 객체 집합 P가 주어지면, k-최원접 이웃 질의는 질의 객체 q에서 가장 멀리 있는 k개의 데이터 객체를 찾는다. 데이터베이스 분야에서 대부분의 연구는 k-최근접 이웃 질의에 중점을 두고 있어서, k-최원접 이웃 질의라는 중요한 근접 질의유형은 별다른 관심을 받지 못했다. 이 논문에서는 도로 네트워크에서 가장 멀리 있는 이웃을 찾는 문제를 다룬다. 도로 네트워크에서 k-최원접 이웃 질의를 처리하는 연구는 거의 없었다. 도로 네트워크에서 k-최원접 이웃 질의를 처리해야 하는 문제는 최단 경로 거리를 계산하는 횟수를 줄이는 것인데, 이는 도로 네트워크와 유클리드 공간의 질의 처리에서 가장 중요한 차이다. 질의 객체와 데이터 객체 사이의 최단 경로 거리에 대한 중복 계산을 줄이기 위하여 공유 계산 전략을 사용한다. 질의 객체에서 데이터 세그먼트까지 최대 거리를 기반으로 효과적으로 후보군을 제거하는 방법은 제시한다. 마지막으로 실제 도로 지도를 사용한 광범위한 실험을 통해 제시된 방법의 효율성과 확장성을 보여준다.

센서 네트워크에서 효율적인 KNN 질의처리 방법 (An Efficient KNN Query Processing Method in Sensor Networks)

  • 손인근;현동준;정연돈;이은규;김명호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제32권4호
    • /
    • pp.429-440
    • /
    • 2005
  • 전기전자 기술의 발달로 센서의 기능이 더욱 강력해지면서, 센서 네트워크의 활용 분야는 더욱 다양해지고 있다. 센서 네트워크 어플리케이션을 사용하는 주 목적은 관심 지역(예, 공장 물품 창고, 재난지역, 야생 서식지 등)에서 발생하는 현상들을 관찰하고, 유용한 정보를 얻기 위한 것이다. k-근접 노드(KNN: K Nearest Neighbor) 탐색 질의는 특정 위치에서 지리적으로 근접한 k개의 이웃 객체를 찾기 위한 질의로서, 센서 네트워크 환경에서도 중요한 어플리케이션 중 하나이다. 그러나 이전 방법들은 센서 네트워크 환경에서 사용하기 부적합하거나 에너지 효율성 문제를 가지고 있었다. 본 논문에서는 센서 네트워크 환경의 특성을 고려하면서, k개의 근접 노드를 에너지 효율적으로 탐색할 수 있는 방법을 제안한다. 제안하는 방법은 k개의 근접 노드를 찾을 때까지 탐색 영역을 점진적으로 확장하고, 영역 내 센서들을 선별적으로 방문하여 원하는 위치 정보를 얻어내는 것이다. 이를 통해 원하는 k개의 근접 노드를 찾아내면서도 에너지 소모를 줄일 수 있다 본 논문에서는 제안하는 방법이 기존의 방법보다 효율적이라는 것을 다양한 조건의 실험을 통해 설명한다.

큰 그래프에서의 모든 쌍에 대한 빠른 2 단계 랜덤 워크 계산 방법 (Fast Computation of All-pairs 2-step Radom Walk on Large Graphs)

  • 박성찬;이상구
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(C)
    • /
    • pp.125-127
    • /
    • 2012
  • 현재 이종 그래프에 대한 연구가 활발히 진행되고 있다. 특히 추천 및 검색 분야에서 이종 그래프를 활용하여 성능을 높이는 성과가 두드러진다. 이종 그래프는 다양한 정보를 갖고 있으며, 특히 2단계 랜덤 워크 확률은 여러 유용한 정보를 가지고 있다. "어떤 사용자가 많이 본 영화를 많이 본 사용자", "어떤 사용자의 이웃이 많이 구입한 상품" 등이 그예이다. 하지만 이러한 정보를 실시간에 계산하기는 어려우며, 미리 계산해두는 것도 시간이 많이 든다. 이에 따라, 본 연구에서는 모든 출발 노드-도착 노드 쌍에 대한 2단계 랜덤 워크를 빠르게 미리 계산하는 알고리듬을 제시한다. 동일한 이웃 노드를 다수 가진 두 노드에서 출발하는 랜덤 워크 확률 값은 서로 비슷하다는 사실을 이용하여, 이전 계산 결과를 활용하여 근접 노드 목록에 대한 임의 접근 횟수를 줄인다. 더불어 본 알고리듬과 관련된 현안을 몇 가지 소개한다.

PCA 기반 군집화를 이용한 해슁 기법 (A Hashing Method Using PCA-based Clustering)

  • 박정희
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권6호
    • /
    • pp.215-218
    • /
    • 2014
  • 해슁(hashing)을 기반으로 한 근사 최근접 이웃 탐색(approximate nearest neighbors search, ANN search) 방법에서는 데이터 샘플들을 k-비트 이진 코드로 변환하는 해쉬 함수들을 이용함으로써 근접 이웃 탐색이 이진변환 공간에서 이루어지게 된다. 본 논문에서는 PCA 기반 군집화 방법인 Principal Direction Divisive Partitioning(PDDP)를 이용한 해슁 방법을 제안한다. PDDP는 가장 큰 분산을 가지는 클러스터를 선택하여 그 클러스터의 첫 번째 주성분 방향을 이용하여 두 개의 클러스터로 분할하는 과정을 반복적으로 시행하는 군집화 방법이다. 제안하는 해슁 방법에서는 PDDP에서 분할을 위해 사용하는 주성분방향을 바이너리 코딩을 위한 사영벡터로서 사용한다. 실험결과는 제안하는 방법이 다른 해슁 방법들과 비교하여 경쟁력 있는 방법임을 입증한다.

기계학습 알고리즘을 사용한 스포츠 경기장 방문객 마케팅 적용 방안 (A Study on Application of Machine Learning Algorithms to Visitor Marketing in Sports Stadium)

  • 박소현;임선영;박영호
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권1호
    • /
    • pp.27-33
    • /
    • 2018
  • 본 연구에서는 마케팅 분야 중 스포츠 경기장을 찾는 관람객의 빅 데이터를 분석하여 소비자에게 맞춤형 마케팅 서비스를 제공하는 연구를 진행한다. 이를 위해 본 연구에서는 K-평균 군집화 방법을 사용하여 유사 관람객 그룹을 도출하고자 하며, K-근접 이웃 방법을 사용하여 새로운 방문객의 관심 매장을 예측하고자 한다. 실험 결과를 통해 상기 두 가지 알고리즘을 사용하는 것은 유사 관람객 그룹을 도출하며 신규 관람객 입장 시 신규 관람객의 특성에 맞는 적합한 마케팅 서비스를 제공 할 수 있게 하였다.