• 제목/요약/키워드: k-${\varepsilon}$ Turbulence Model

검색결과 467건 처리시간 0.028초

보일러빌딩 내부 환기현상에 관한 수치적 연구 (Numerical Study on the Ventilation Effect in the Boiler Building)

  • 김철환;유근종;최훈기
    • 한국산업보건학회지
    • /
    • 제15권3호
    • /
    • pp.239-249
    • /
    • 2005
  • Ventilation effect is analyzed for boiler building with multiple heat sources. Air flow inside the boiler building is characterized as turbulent mixed convection. Analysis methodology is set up with two different $k-{\varepsilon}$ type models (standard $k-{\varepsilon}$, RNG $k-{\varepsilon}$). Two different cases with high and low outside temperature are analyzed. In case of high outside temperature condition, mixed convection is well realized inside the boiler building. With different upper louver opening rate, air flow is also well established and proper opening rate is found to meet design limit in case of low outside temperature condition. Difference of analysis results for two different turbulence models are not significant. Therefore, analysis methodology with simple $k-{\varepsilon}$ turbulence model is found to be reliable for the boiler building ventilation analysis. However, more simplified geometrical model is desired to expand its application.

Bluff body asymmetric flow phenomenon - real effect or solver artefact?

  • Prevezer, Tanya;Holding, Jeremy;Gaylard, Adrian;Palin, Robert
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.359-368
    • /
    • 2002
  • This paper describes a CFD investigation into the flow over the cab of a bluff-fronted lorry. Several different simulations were undertaken, using the commercial codes: CFX, Fluent and PowerFLOW. Using the $k-{\varepsilon}$ turbulence model, the flow over the cab was symmetric, however, using more accurate turbulence models such as the RNG $k-{\varepsilon}$ model or the Reynolds Stress Model, the flow was asymmetric. The paper discusses whether this phenomenon is a real effect or whether it is a solver artefact and the study is supported by experimental evidence. The findings are preliminary, but suggest that it has a physical origin and that it may be aspect ratio-dependent.

Mean pressure prediction for the case of 3D unsteady turbulent flow past isolated prismatic cylinder

  • Ramesh, V.;Vengadesan, S.;Narasimhan, J.L.
    • Wind and Structures
    • /
    • 제9권5호
    • /
    • pp.357-367
    • /
    • 2006
  • Unsteady 3D Reynolds Averaged Navier-Stokes (URANS) solver is used to simulate the turbulent flow past an isolated prismatic cylinder at Re=37,400. The aspect ratio of height to base width of the body is 5. The turbulence closure is achieved through a non-linear $k-{\varepsilon}$ model. The applicability of this model to predict unsteady forces associated with this flow is examined. The study shows that the present URANS solver with standard wall functions predicts all the major unsteady phenomena showing closer agreement with experiment. This investigation concludes that URANS simulations with the non-linear $k-{\varepsilon}$ model as a turbulence closure provides a promising alternative to LES with view to study flows having complex features.

HVAC 덕트내의 3차원 난류유동에 관한 수치해석적 연구 (Numerical Analysis of Three Dimensional Turbulent Flow in a HVAC Duct)

  • 정수진;류수열;김태훈
    • 한국자동차공학회논문집
    • /
    • 제4권4호
    • /
    • pp.118-129
    • /
    • 1996
  • In this study, three dimensional flow analysis in a HVAC duct was performed computationally using various turbulence models and compared numerical predictions such as outlet flow split, surface pressure distribution along the duct to experimental data. It's well known that accuracy of computational predictions of flow heavily dependent on turbulent models and discritization method. Therefore, in this work, to assess the ability of turbulent models to predict characteristics of duct flow, three kinds of models, namely standard $k-\varepsilon$, RNG $k-\varepsilon$ and modified $k-\varepsilon$, containing parameter for the effect of streamline curvature were employed and validated one another by comparing with experimental data. In results, modified $k-\varepsilon$ turbulence model allows a successful prediction of static pressure distribution particulary at around strong curvature but little improvement flow split. In the futrue, adoption of CFD to design HVAC duct with modified $k-\varepsilon$ model will bring benefits of producing more accurate prediction, and also give designers more detail information much more than now.

  • PDF

$k-{\varepsilon}-\bar{\upsilon{'}^2}$모델을 이용한 경사진 충돌제트의 유동 및 열전달 특성에 대한 수치해석적 연구 (A Numerical Study on Flow and Heat Transfer Characteristics for an Oblique Impingement Jet Using $k-{\varepsilon}-\bar{\upsilon{'}^2}$ Model)

  • 최영기;최봉준;이정희
    • 대한기계학회논문집B
    • /
    • 제25권9호
    • /
    • pp.1183-1192
    • /
    • 2001
  • The numerical simulation has been conducted for the investigation of flow and heat transfer characteristics of an oblique impingement jet injected to a flat plate. The finite volume method was used to discretize the governing equations based on the non-orthogonal coordinate with non-staggered variable arrangement. The $textsc{k}$-$\varepsilon$-ν(sup)'2 turbulence model was employed to consider the consider the anisotropic flow characteristics generated by the impingement jet flow. The predicted results were compared with the experimental data and those of the standard $textsc{k}$-$\varepsilon$ turbulence model. The results of the $textsc{k}$-$\varepsilon$-ν(sup)'2 model showed better agreement with the experimental data than those of the standard $textsc{k}$-$\varepsilon$ model. In order to get the optimum condition, the flow and temperature fields were calculated with a variation of inclined angle($\alpha$=30$^{\circ}$~90$^{\circ}$) and the distance between the jet exit and impingement plate-to-diameter (L/D=4~10) at a fixed Reynolds number(Re=20,000). For a small L/D, the near-peak Nusselt numbers were not significantly effected by the inclined angle. The near-peak Nusselt numbers were not significantly affected by the L/D in the case of a large $\alpha$. The overall shape of the local Nusselt numbers was influenced by both the jet orifice-to-plate spacing and the jet angle.

Numerical simulation of the neutral equilibrium atmospheric boundary layer using the SST k-ω turbulence model

  • Hu, Peng;Li, Yongle;Cai, C.S.;Liao, Haili;Xu, G.J.
    • Wind and Structures
    • /
    • 제17권1호
    • /
    • pp.87-105
    • /
    • 2013
  • Modeling an equilibrium atmospheric boundary layer (ABL) in an empty computational domain has routinely been performed with the k-${\varepsilon}$ turbulence model. However, the research objects of structural wind engineering are bluff bodies, and the SST k-${\omega}$ turbulence model is more widely used in the numerical simulation of flow around bluff bodies than the k-${\varepsilon}$ turbulence model. Therefore, to simulate an equilibrium ABL based on the SST k-${\omega}$ turbulence model, the inlet profiles of the mean wind speed U, turbulence kinetic energy k, and specific dissipation rate ${\omega}$ are proposed, and the source terms for the U, k and ${\omega}$ are derived by satisfying their corresponding transport equations. Based on the proposed inlet profiles, numerical comparative studies with and without considering the source terms are carried out in an empty computational domain, and an actual numerical simulation with a trapezoidal hill is further conducted. It shows that when the source terms are considered, the profiles of U, k and ${\omega}$ are all maintained well along the empty computational domain and the accuracy of the actual numerical simulation is greatly improved. The present study could provide a new methodology for modeling the equilibrium ABL problem and for further CFD simulations with practical value.

라그랑지 입자 모델을 이용한 k-ε Algebraic Stress Model과 Mellor-Yamada Model의 비교 연구 (A Comparative Study of k-ε Algebraic Stress Model and Mellor-Yamada Model Applied to Atmospheric Dispersion Simulation Using Lagrangian Particle Dispersion Model)

  • 김상백;오성남
    • 한국대기환경학회지
    • /
    • 제20권1호
    • /
    • pp.47-58
    • /
    • 2004
  • The $textsc{k}$-$\varepsilon$ algebraic stress model (KEASM) was applied to atmospheric dispersion simulation using the Lagrangian particle dispersion model and was compared with the most popular turbulence closure model in the field of atmospheric simulation, the Mellor-Yamada (MY) model. KEASM has been rarely applied to atmospheric simulation, but it includes the pressure redistribution effect of buoyancy due to heat and momentum fluxes. On the other hand, such effect is excluded from MY model. In the simulation study, the difference in the two turbulence models was reflected to both the turbulent velocity and the Lagrangian time scale. There was little difference in the vertical diffusion coefficient $\sigma$$_{z}$. However, the horizontal diffusion coefficient or calculated by KEASM was larger than that by MY model, coincided with the Pasquill-Gifford (PG) chart. The applicability of KEASM to atmospheric simulations was demonstrated by the simulations.s.

부방파제의 유동과 와의 생성 및 소멸에 관한 연구 (A Study on Flow and Creation and Dissipation of Vorticity around Rectangular Floating Breakwater)

  • 윤종성;김명규;정광효;김가야
    • 한국해양공학회지
    • /
    • 제22권3호
    • /
    • pp.24-33
    • /
    • 2008
  • In this study, flow and creation and dissipation of vorticity around rectangular floating breakwater is investigated both experimentally and numerically. The PIV system(Particle image velocimetry) is employed to obtain the velocity field in the vorticity of rectangular structure. The numerical model, combined with ${\kappa}-{\varepsilon}$ turbulence model and the VOF method based on RANS equation, is used to analyze the turbulence structure. In the results of this study, the vorticity is found around conner of rectangular structure at all time domain, and creation and dissipation of vorticity are closely related to wave period. Separation points of phase of vortex due to flow separation for longer period waves are faster then for shorter period waves.

세라믹 필터 집진기의 유동 해석 (Aanalyze the Fluid Inside the Ceramic Filtration Dust Collection System)

  • 장성철;최동순
    • 한국산업융합학회 논문집
    • /
    • 제20권1호
    • /
    • pp.67-73
    • /
    • 2017
  • This study aimed to analyze the fluid inside the ceramic filtration dust collection system which was assumed to be a stationary 3-dimensional turbulence. The fluid dynamics data necessary for performance curves were obtained based on the analysis results. The governing equations used to compute the velocity distribution and pressure inside the catalyst converter were expressed with continuity and momentum equations. Furthermore, the ${\kappa}-{\varepsilon}$ turbulence model, already validated by the industry(coal factory, high temperature dust collector) was used for the study. Of a total of three computational models employed, Model-1 served as the basis for CFD analysis which took measurements in increments of 70mm.

식생된 개수로에서 난류 구조와 부유사 이동 현상의 수치해석 (Numerical Investigation of Turbulence Structure and Suspended Sediment Transport in Vegetated Open-Channel Flows)

  • 강형식;최성욱
    • 한국수자원학회논문집
    • /
    • 제33권5호
    • /
    • pp.581-592
    • /
    • 2000
  • 본 연구에서는 식생된 개수로에서의 난류 구조와 부유사 이동을 수치모의하였다. 난류폐합식으로는 $\textsc{k}-\;\varepsilon$ 난류모형을 사용하였다. 수치모의를 통해 평균유속, 난류강도, 레이놀즈 응력, 난류에너지 생성 및 소멸의 분포를 계산하였으며, 기존의 실험결과와 비교하였다. 식생에 의한 항력으로 인하여 평균유속이 전반적으로 감소되었으며, 이에 따라 난류강도와 레이놀즈 응력의 분포 역시 약화되었다. 침수식생의 경우, 식생높이보다 높은 구간에서는 전단에 의한 난류에너지 생성이 지배적이며, 식생높이 보다 낮은 구간에서는 후류에 의한 난류에너지 생성이 지배적임을 확인하였다. 또한 정수식생의 경우, 전채 수심에 걸쳐 후류에 의한 난류에너지 생성이 지배적으로 발생하였다. 대체적으로 수치모의에 의한 결과가 실험값과 유사한 양상을 보이는 것이 확인되었다. 수치모형으로부터 계산된 난류동점성계수 분포를 이용하여 부유사 보존방정식을 수치해석하였다. 식생된 개수로에서의 부유사 농도는 일반 개수로에 비해 전 수심에 걸쳐 균일하게 분포하였다. 또한 식생밀도가 증가할수록 부유사량은 감소하며, 동일한 식생밀도에 대해서는 입자의 크기가 작을수록 부유사량이 증가함을 확인하였다.

  • PDF