• Title/Summary/Keyword: k-$\varepsilon$ Turbulent Flow

Search Result 291, Processing Time 0.025 seconds

Numerical Simulation of Unsteady Cavitating Flow Around 2D Hydrofoil (수중익 주위의 2차원 비정상 공동 현상 해석)

  • Lee, Se-Young;Park, Soo-Hyung;Lee, Chang-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.653-662
    • /
    • 2007
  • Due to the difficulty raised from the coupling of cavitation modeling with turbulent flow, numerical simulation for two phase flow remains one of the challenging issues in the society. This research focuses on the development of numerical code to deal with incompressible two phase flow around 2D hydrofoil by combing the cavitation model suggested by Kunz et al. with $k-{\varepsilon}$ turbulent model. The simulation results are compared to experimental data to verify the validity of the developed code. Also, the comparison of the calculation results is made with LES results to evaluate the capability of $k-{\varepsilon}$ turbulence model. The calculation results show very good agreement with experimental observations even though this code can not grasp the small scaled bubbles in the calculation wheres LES can hold the real physics. This code will be extended to 3D compressible two phase flow for the study on the fluid dynamics in the inducers and impellers.

Numerical analysis of turbulent flows in the helically coiled pipes of heat transfer (열교환기의 나선형 관내 난류유동 수치해석)

  • Kwag, Seung-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.905-910
    • /
    • 2013
  • The flow analysis has been made by applying the turbulent models in the helically coiled tubes of heat transfer. The k-${\varepsilon}$ and Spalart-Allmaras turbulent models are used in which the structured grid is applied for the simulation. The velocity vector, the pressure contour, the change of residuals along the iteration number and the friction factors are simulated by solving the Navier-Stokes equations to make clear the Reynolds number effect. The helical tube increases the centrifugal forces by which the wall shear stress become larger on the outer side of the tube. The centrifugal force makes the heat transfer rate locally larger due to the increase of the flow energy, which finds out the close relationship between the pressure drop and friction factor in the internal flow. The present numerical results are compared with others, for example, in the value of friction factor for validation.

Numerical Prediction of Turbulent Heat Transfer to Low Prandtl Bumber fluid Flow through Rod Bundles

  • Chung, Bum-Jin;Kim, Sin
    • Journal of Energy Engineering
    • /
    • v.7 no.2
    • /
    • pp.187-193
    • /
    • 1998
  • The turbulent heat transfer to low Prandtl number fluid flow through rod bundles is analyzed using k-$\varepsilon$ two-equation model. For the prediction of the turbulent flow field, an anisotropic eddy viscosity model is used. In the analysis of the temperature field, the effects of various parameters such as geometry, Reynolds and Prandtl numbers are considered. The calculation in made for Prandtl numbers from 0.001 to 0.1 in order to analyze the heat transfer to low Prandtl number fluid such as liquid metals. The numerical results show that for small P/D (Pitch/Diameter) geometries low Prandtl number makes severe changes of the rod surface temperature.

  • PDF

Numerical Study of Flow Characteristics over Square Cylinders with an Attached Splitter Plate

  • Nguyen, Van Minh;Koo, Bon-Guk
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.86-95
    • /
    • 2018
  • The fluid flow over structures has been widely investigated by many researchers because its extensive application in offshore structures, skyscrapers, chimneys and cooling towers, brides. In the viewpoint of reducing the drag for offshore structure, it becomes challenging problem in the field of hydrodynamic of offshore structure. The purpose of this study is to investigate a flow over a square cylinder with an attached splitter plate using RANS method. First, RANS turbulent models such as a standard $k-{\omega}$ model, SST $k-{\omega}$ model, RNG $k-{\varepsilon}$ model, realizable $k-{\varepsilon}$ model, standard $k-{\varepsilon}$ model were used for choosing suitable turbulent model which has the best agreement with available experimental result. Drag of single cylinder estimated by using standard $k-{\omega}$ has a good agreement with published experimental result. Therefore, the stand $k-{\omega}$ was selected for simulation for flow over a square cylinder with an attached plate. Second, the numerical results of drag of square cylinder with an attached splitter plate in various length of an attached plate were performed using RANS method in ANSYS Fluent. In this paper, the numerical simulations were conducted at a Reynolds number of 485 and the thickness of the splitter plate is chosen as a constant value about 10% of cylinder width. The numerical results of drag coefficient of square cylinder are compared with experimental result published by other researchers. Finally, the effect of the splitter plate attached to the rear side of the square cylinder has been investigated numerically with a focus on the drag coefficient and flow characteristic. As a result, the drag coefficient decreases with an increase in splitter plate length.

The Effect of Wind Force on Stability of Agricultural Structures - Numerical Calculation of Wind Pressure Coefficients - (풍하중이 농업시설물의 구조적 안정성에 미치는 영향 -수치해석에 의한 풍력계수분포 산정-)

  • 최홍림;손정익
    • Journal of Bio-Environment Control
    • /
    • v.3 no.1
    • /
    • pp.10-19
    • /
    • 1994
  • Wind load is known to be one of major forces to influence the stability of agricultural structures. General flow fields were calculated to determine flow characteristics over the envelop of the following three types of greenhouses with arched roof : single span, twin span greenhouses, and two single span greenhouses apart 3m inbetween. Pressure coefficients along the envelop of greenhouse were numerically calculated by the k-$\varepsilon$ turbulence model, which lead to determine wind forces on it. Curvilinear coordinate for an arched roof and the upwind scheme were adopted for the study. The calculated pressure coefficients were validated with the avaliable data of Japanese Standard and NGAM Standard. The Magnitude of calculated forces over the envelop was not in good accordance with data except the windward wall. Even tile data of Japanese and NGAM Standard for validation deviated a lot from each other in quantity and quality. Such discrepancy may be attributed to different geometric and/or flow configuration conditions for experiments, or the insenstivity of the k-$\varepsilon$ turbulence model to recirculation flow.

  • PDF

Development of Multiple Production $\varepsilon$ Equation Model in Low Reynolds Number $\kappa$-$\varepsilon$ Model with the Aid of DNS Data (저 레이놀즈수 $\kappa$-$\varepsilon$psilon.모형에서 DNS 자료에 의한 $\varepsilon$방정식의 다중 생성률 모형 개발)

  • Sin, Jong-Geun;Choe, Yeong-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.304-320
    • /
    • 1996
  • A multiple production .epsilon. equation model was developed in the low Reynolds number $\kappa$-$\varepsilon$ model with the aids of DNS data. We derived the model theoretically and avoided the use of empirical correlations as much as possible in order for the model to have generality in the prediction of complex turbulent flow. Unavoidable model constants were, however, optimized with the aids of DNS data. All the production and dissipation models in the $\varepsilon$ equation were modified with damping functions to satisfy the wall limiting behavior. A new $f_{\mu}$ function, turbulent diffusion and pressure diffusion model for the k and .epsilon. equations were also proposed to satisfy the wall limiting behavior. By, computational investigation on the plane channel flows, we found that the multiple production model for .epsilon. equation could improve the near wall turbulence behavior compared with the standard production model without the complicated empirical modification. Satisfication of the wall limiting conditions for each turbulence model term was found to be most important for the accurate prediction of near wall turbulence behaviors.

RANS-LES Simulations of Scalar Mixing in Recessed Coaxial Injectors (RANS 및 LES를 이용한 리세스가 있는 동축분사기의 유동혼합에 대한 수치해석)

  • Park, Tae-Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.55-63
    • /
    • 2012
  • The turbulent flow characteristics in a coaxial injector were investigated by the nonlinear $k-{\varepsilon}-f_{\mu}$ model of Park et al.[1] and large eddy simulation (LES). In order to analyze the geometric effects on the scalar mixing for nonreacting variable-density flows, several recessed lengths and momentum flux ratios are selected at a constant Reynolds number. The nonlinear $k-{\varepsilon}-f_{\mu}$�� model proposed the meaningful characteristics for various momentum flux ratios and recess lengths. The LES results showed the changes of small-scale structures by the recess. When the inner jet was recessed, the development of turbulent kinetic energy became faster than that of non-recessed case. Also, the mixing characteristics were mainly influenced by the variation of shear rates, but the local mixing was changed by the adoption of recess.

Numerical simulation of tip clearance flows through linear turbine cascades (선형터빈 익렬의 익단간극유동에 대한 수치해석적 연구)

  • Lee, Hun-Gu;Yu, Jeong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.813-821
    • /
    • 1997
  • Three-dimensional turbulent incompressible flow through the tip clearance of a linear turbine rotor cascade with high turning angle has been analyzed numerically. As a preliminary study to predict the tip clearance loss realistically, a generalized k-.epsilon. model derived by RNG (renormalized group) method is used for the modeling of Reynolds stresses to account for the strain rate of turbulent flow. The effects of the tip clearance flow on the passage vortex, the total pressure loss are considered qualitatively. The existences of vena contract and tip clearance vortex have been confirmed and it has been shown that as the size of the tip clearance increases, the accumulated flow through the tip clearance and the total pressure loss downstream of the cascade increase.

Numerical Analysis on the Flow Field and Heat Transfer Characteristics of Longitudinal Vortices in Turbulent Boundary Layer - On the Common Flow Up - (3차원 난류경계층 내에 존재하는 종방향 와동의 유동장 및 열전달 특성에 관한 수치해석(II) - Common Flow Up에 관하여 -)

  • Yang Jang-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.799-807
    • /
    • 2005
  • The flow characteristics and the heat transfer rate on a surface by the interaction of a pair of vortices are studied numerically. To analyze the common flow up produced by vortex generators in a rectangular channel flow, the pseudo-compressibility viscous method is introduced into the Reynolds-averaged Navier-Stokes equation for 3-dimensional unsteady, incompressible viscous flows. To predict turbulence characteristics, a two-layer $k-\varepsilon$ turbulence model is used on the flat plate 3-dimensional turbulence boundary The computational results predict accurately Reynolds stress, turbulent kinetic energy and flow field generated by the vortex generators. The numerical results, such as thermal boundary layers, skin friction characteristics and heat transfers, are also reasonably close to the experimental data.

Numerical Modeling of Free Surface Flow over a Broad-Crested Rectangular Weir (사각형 광정위어를 통과하는 자유수면 흐름 수치모의)

  • Paik, Joongcheol;Lee, Nam Joo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.4
    • /
    • pp.281-290
    • /
    • 2015
  • Numerical simulations of free surface flow over a broad-crested rectangular weir are conducted by using the volume of fraction (VOF) method and three different turbulence models, the k-${\varepsilon}$, RNG k-${\omega}$ and k-${\omega}$ SST models. The governing equations are solved by a second-order accurate finite volume method and the grid sensitivity study of solutions is carried out. The numerical results are evaluated by comparing the solutions with experimental and numerical results of Kirkgoz et al. (2008) and some non-dimensionalized experimental results obtained by Moss (1972) and Zachoval et al. (2012). The results show that the present numerical model can reasonably reproduce the experimental results, while three turbulent models yield different numerical predictions of two distinct zones of flow separation, the first zone is in front of the upstream edge of the weir and the second is created immediately behind the upstream edge of the weir where the flow is separated to form the separation bubble. The standard k-${\varepsilon}$ model appears to significantly underestimate the size of both separation zones and the k-${\omega}$ SST model slightly over-estimates the first separation zone in front of the weir. The RNG k-${\varepsilon}$ model predicts both separation zones in overall good agreement with the experimental measurement, while the k-${\omega}$ SST model yields the best numerical prediction of separation bubble at the upstream edge of the weir.