• Title/Summary/Keyword: k-$\varepsilon$ 난류 모델

Search Result 184, Processing Time 0.026 seconds

An Analytical Study on the Condensation of Submerged Vapor Jets in Subcooled Liquids (과냉수에서의 증기응축제트에 대한 해석적 연구)

  • 김기웅;이계복;김환열
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.333-340
    • /
    • 1999
  • A numerical study of turbulent condensing vapor jet submerged in subcooled liquids has been conducted. A physical model of the process is presented employing the locally homogeneous flow approximation of two phase flow in conjunction with a $\kappa$-$\varepsilon$-g model of turbulence properties. In this model the turbulence is represented by differential equations for its kinetic energy and dissipation. A differential equation for the concentration fluctuations is solved and a clipped normal probability distribution function is proposed for the mixture fraction. Effects of steam mass flux, pool temperature and nozzle internal diameter on the condensing vapor jet are also analyzed. The model is evaluated using existing data for turbulent condensing vapor jets. The agreement between the predictions and the available experimental data is good.

  • PDF

Simulation of Turbulent Flow in a Square Duct with Nonlinear k-$\varepsilon$ Models (비선형 k-$\varepsilon$ 난류모델에 따른 정사각형 덕트내 난류유동 수치해석(8권1호 게재논문중 그림정정))

  • Myong Hyon Kook
    • Journal of computational fluids engineering
    • /
    • v.8 no.2
    • /
    • pp.57-63
    • /
    • 2003
  • Two nonlinear κ-ε models with the wall function method are applied to the fully developed turbulent flow in a square duct. Typical predicted quantities such as axial and secondary velocities, turbulent kinetic energy and Reynolds stresses are compared in details both qualitatively and quantitatively with each other. A nonlinear κ-ε model with the wall function method capable of predicting accurately duct flows involving turbulence-driven secondary motion is presented in the present paper. The nonlinear κ-ε model of Shih et al.[1] adopted in a commercial code is found to be unable to predict accurately duct flows with the prediction level of secondary flows one order less than that of the experiment.

Simulation of Turbulent Flow in a Triangular Subchannel of a Bare Rod Bundle with Nonlinear k-$\varepsilon$ Models (비선형 k-$\varepsilon$ 난류모델에 의한 봉다발의 삼각형 부수로내 난류유동 수치해석)

  • Myong Hyon Kook
    • Journal of computational fluids engineering
    • /
    • v.8 no.2
    • /
    • pp.8-15
    • /
    • 2003
  • Three nonlinear κ-ε models with the wall function method are applied to the fully developed turbulent flow in a triangular subchannel of a bare rod bundle. Typical predicted quantities such as axial and secondary velocities, turbulent kinetic energy and wall shear stress are compared in details both qualitatively and quantitatively with both each other and experimental data. The nonlinear κ-ε models by Speziale[1] and Myong and Kasagi[2] are found to be capable of predicting accurately noncircular duct flows involving turbulence-driven secondary motion. The nonlinear κ-ε model by Shih et aL.[3] adopted in a commercial code is found to be unable to predict accurately noncircular flows with the prediction level of secondary flows one order less than that of the experiment.

Simulation of Turbulent Flow in a Square Duct with Nonlinear k-$\varepsilon$ Models (비선형 k-$\varepsilon$ 난류모델에 따른 정사각형 덕트내 난류유동 수치해석)

  • Myong Hyon Kook
    • Journal of computational fluids engineering
    • /
    • v.8 no.1
    • /
    • pp.23-29
    • /
    • 2003
  • Two nonlinear κ-ε models with the wall function method are applied to the fully developed turbulent flow in a square duct. Typical predicted quantities such as axial and secondary velocities, turbulent kinetic energy and Reynolds stresses are compared in details both qualitatively and quantitatively with each other. A nonlinear κ-ε model with the wall function method capable of predicting accurately duct flows involving turbulence-driven secondary motion is presented in the present paper. The nonlinear κ-ε model of Shih et al.[1] adopted in a commercial code is found to be unable to predict accurately duct flows with the prediction level of secondary flows one order less than that of the experiment.

Numerical Analysis on the Effect of High-Shear in a Rotor-Stator Mixer (Rotor-Stator Mixer 전단효과에 관한 수치 해석적 연구)

  • Yeum, Sang Hoon;Lee, Seok Soon
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.39-48
    • /
    • 2019
  • The turbulent flow in the rotor-stator mixer is based on shear characteristics generated by the interaction of the stator with the rotor rotating at high speed. In this study, the flow characteristics analysis of the unsteady state generated by the interaction of the rotor and the stator in the prototype model of the emulsion-fuel related mixer development was performed with the MRF and SMM by applying the ANSYS FLUENT $k-{\varepsilon}$ (RKE) turbulence model. The behavior and shear characteristics of the flow particles generated at the interface between the designed rotor and stator, and trends such as velocity distribution and turbulence eddy dissipation, were predicted and verified using the CFD analysis.

Study on Smoke Prediction in Heavy-duty Diesel Engine (대형 디젤기관에서 매연가스 예측에 관한 연구)

  • Baik, Doo-Sung;Lee, Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.865-870
    • /
    • 2008
  • The effects of exhaust gas recirculation (ECR) on smoke emissions in heavy duty diesel engine are numerically studied by using KIVA-3V CFD code. For the analysis, RNG k-$\varepsilon$ turbulence model was given as a governing equation, and mathematical models of Tab, Wave, Watkins-Park, Nagle-Strikland were applied to describe physical process of droplet breakup, atomization, wall impingement and smoke respectively.

Investigation of Turbulent Flow Effect in Segmented Arc Heater (아크히터 내부의 난류 효과에 대한 고찰)

  • Lee, Jeong-Il;Kim, Kyu-Hong;Kim, Chong-Am
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.1-8
    • /
    • 2005
  • Flows in segmented arc-heaters have been calculated for prediction of experimental operating condition or for analysis and design of arc-heater itself. Some researchers succeeded in calculating accurately inner flows of a arc-heater, but could not made mathematical models which satisfy various operating conditions for many arc-heaters. this study is forced on turbulence for the generality of mathematical model. Instead of algebraic turbulence models which are frequently used for calculating inner flow of arc-heater, two equation turbulent models are used. Prediction results agree well with experiment data and it was confirmed that $k-\varepsilon$ two equation turbulence model is appropriate for a flow in an arc heater throughout extensive numerical testing.

Numerical Analysis of Two-Dimensional Surface Buoyant Jets by k-$\varepsilon$ Turbulence Model (이차원 표층방류 밀도분류의 k-$\varepsilon$ 모델에 의한 수치해석)

  • 허재영;최한기;강주복
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.2
    • /
    • pp.81-91
    • /
    • 1991
  • A k-$\varepsilon$ equation model was established to investigate the behaviours of two-dimensional surface buoyant jets. Its computational results were compared with experimental data on the mean flow and the turbulent transport. The model was proved to predict the flow characteristics reasonably. The influence of the values of k and $\varepsilon$ given in the inlet on the evaluation of surface buoyant jets was examined to determine them quantitatively. Computations for several values of buoyancy production coefficient $C\varepsilon$$_3$ in the $\varepsilon$ equation, which has been neglected by many researchers. were carried out to evaluate its effect on the flow development. Computational results of the two-dimensional surface buoyant jets were presented and briefly discussed.

  • PDF

Modeling for gaseous methane/liquid oxygen combustion processes at supercritical pressure (초임계 압력상태의 기체메탄/액체산소 연소과정 해석)

  • Kim, Tae-Hoon;Kim, Yong-Mo;Kim, Seong-Ku
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.85-88
    • /
    • 2010
  • This study has been mainly motivated to numerically model the supercritical mixing and combustion processes encountered in the liquid propellant rocket engines. In the present approach, turbulence is represented by the extended $k-{\varepsilon}$ turbulence model. To account for the real fluid effects, the propellant mixture properties are calculated by using SRK (Souve-Redlich-Kwong) equation of state. In order to realistically represent the turbulence-chemistry interaction in the turbulent nonpremixed flames, the flamelet approach based on the real fluid flamelet library has been adopted. Based on numerical results, the detailed discussions are made for the real fluid effects and the precise structure of gaseous methane/liquid oxygen coaxial jet flame.

  • PDF

Numerical Analysis on the Reacting Flow-Field of Coaxial Combustor with a Wedge-Shaped Flame Holder (Wedge형 보염기를 장착한 동축형 연소기의 반응 유동장 수치해석)

  • Ko Hyun;Sung Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.450-454
    • /
    • 2005
  • A numerical analysis is performed to analyze the reacting flow-field of an axisymetric coaxial ramjet combustor. Two dimensional Navier-Stokes equation with low Reynolds number $k-\varepsilon$ turbulence model is utilized and finite-rate chemistry model is adopted. Eddy dissipation model is applied for a modeling of turbulent combustion. Two different types of combustors (combustor with a suddenly expanded dump and combustor with wedge-shaped flame holders) are compared in a view point of flame stabilizing.

  • PDF