Recently, high-dimensional index structures have been required for similarity search in such database applications s multimedia database and data warehousing. In this paper, we propose a new cell-based signature tree, called CS-tree, which supports efficient storage and retrieval on high-dimensional feature vectors. The proposed CS-tree partitions a high-dimensional feature space into a group of cells and represents a feature vector as its corresponding cell signature. By using cell signatures rather than real feature vectors, it is possible to reduce the height of our CS-tree, leading to efficient retrieval performance. In addition, we present a similarity search algorithm for efficiently pruning the search space based on cells. Finally, we compare the performance of our CS-tree with that of the X-tree being considered as an efficient high-dimensional index structure, in terms of insertion time, retrieval time for a k-nearest neighbor query, and storage overhead. It is shown from experimental results that our CS-tree is better on retrieval performance than the X-tree.
Journal of the Korean Society of Industry Convergence
/
v.23
no.3
/
pp.433-444
/
2020
This study proposes a method to improve the sleep stage and efficiency estimation of sleep apnea patients using a UWB (Ultra-Wideband) radar. Motion and respiration extracted from the radar signal were used. Respiratory signal disturbances by motion artifacts and irregular respiration patterns of sleep apnea patients are compensated for in the preprocessing stage. Preprocessing calculates the standard deviation of the respiration signal for a shift window of 15 seconds to estimate thresholds for compensation and applies it to the breathing signal. The method for estimating the sleep stage is based on the difference in amplitude of two kinds of smoothed respirations signals. In smoothing, the window size is set to 10 seconds and 34 seconds, respectively. The estimated feature was processed by the k-nearest neighbor classifier and the feature filtering model to discriminate between the sleep periods of the rapid eye movement (REM) and non-rapid eye movement (NREM). The feature filtering model reflects the characteristics of the REM sleep that occur continuously and the characteristics that mainly occur in the latter part of this stage. The sleep efficiency is estimated by using the sleep onset time and motion events. Sleep onset time uses estimated features from the gradient changes of the breathing signal. A motion event was applied based on the estimated energy change in the UWB signal. Sleep efficiency and sleep stage accuracy were assessed with polysomnography. The average sleep efficiency and sleep stage accuracy were estimated respectively to be about 96.3% and 88.8% in 18 sleep apnea subjects.
Automated text classification is considered as an important method to manage and process a huge amount of documents in digital forms that are widespread and continuously increasing. Recently, text classification has been addressed with machine learning technologies such as k-nearest neighbor, decision tree, support vector machine and neural networks. However, only few investigations in text classification are studied on real problems but on well-organized text corpus, and do not show their usefulness. This paper proposes and analyzes text classification methods for a real application, email document classification task. First, we propose a combining method of multiple neural networks that improves the performance through the combinations with maximum and neural networks. Second, we present another strategy of combining multiple machine learning classifiers. Voting, Borda count and neural networks improve the overall classification performance. Experimental results show the usefulness of the proposed methods for a real application domain, yielding more than 90% precision rates.
This study classified outer-ring galaxies using 25,308 galaxies within z=0.05 from the SDSS DR7, which are larger than Rpet>6 arcsec and whose minor-to-major axis ratio (b/a)<0.6. We selected 531 galaxies that have ring-like structures by visual inspection of the color images of 25,308 galaxies; these galaxies with ring-like structures served as a primary sample from which we selected 90 outer-ring galaxies. The final sample of 69 outer-ring galaxies was selected by examining the photometric properties of the candidate galaxies. Their properties were determined by conducting surface photometry on their u, g, r, i, and z images. The frequency of the outer-ring galaxies was found to be 0.3% of the local galaxies. We examined the environment of the outer-ring galaxies using two measures of environment, namely, the projected distance to the nearest-neighbor galaxy and the local background density. We did not observe any notable difference between outer-ring and other galactic environments.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.15
no.4
/
pp.68-80
/
2016
This study proposes the traffic prediction and optimal traffic control system based on cell transmission model and genetic algorithm in cloud environment. The proposed prediction and control system consists of four parts. 1) Data preprocessing module detects and imputes the corrupted data and missing data points. 2) Data-driven traffic prediction module predicts the future traffic state using Multi-level K-Nearest Neighbor (MK-NN) Algorithm with stored historical data in SQL database. 3) Online traffic simulation module simulates the future traffic state in various situations including accident, road work, and extreme weather condition with predicted traffic data by MK-NN. 4) Optimal road control module produces the control strategy for large road network with cell transmission model and genetic algorithm. The results show that proposed system can effectively reduce the Vehicle Hours Traveled upto 60%.
Proceedings of the Korean Information Science Society Conference
/
2011.06c
/
pp.112-114
/
2011
On multimedia databases, in order to realize the fast access method, indexing methods for the multidimension data space are used. However, since it is a premise to use the Euclid distance as the distance measure, this method lacks in flexibility. On the other hand, there are metric indexing methods which require only to satisfy distance axiom. Since metric indexing methods can also apply for distance measures other than the Euclid distance, these methods have high flexibility. This paper proposes an improved method of VP-tree which is one of the metric indexing methods. VP-tree follows the node which suits the search range from a route node at searching. And distances between a query and all objects linked from the leaf node which finally arrived are computed, and it investigates whether each object is contained in the search range. However, search speed will become slow if the number of distance calculations in a leaf node increases. Therefore, we paid attention to the candidates selection method using the triangular inequality in a leaf node. As the improved methods, we propose a method to use the nearest neighbor object point for the query as the datum point of the triangular inequality. It becomes possible to make the search range smaller and to cut down the number of times of distance calculation by these improved methods. From evaluation experiments using 10,000 image data, it was found that our proposed method could cut 5%~12% of search time of the traditional method.
The Journal of Korean Institute of Communications and Information Sciences
/
v.35
no.12B
/
pp.1219-1226
/
2010
It is necessary to implementation of system contain intelligent decision making algorithm because discriminant and prediction system for Red Tide is insufficient development and the study of red tide are focused for the investigation of chemical and biological causing. In this paper, we designed inference system using case based reasoning method and implemented knowledge base that case for Red Tide. We used K-Nearest Neighbor algorithm for recommend best similar case and input 375 EA by case for Red Tide case base. As a result, conducted 10-fold cross verification for minimal impact from learning data and acquired confidence, we obtained about 84.2% average accuracy for Red Tide case and the best performance results in case by number of similarity classification k is 5. And, we implemented Red Tide monitoring system using inference result.
Quantitative structure-activity relationship (QSAR) analysis for recently synthesized imidazole-(benz)azole and imidazole - piperazine derivatives was studied for their anticancer activities against breast (MCF-7) cell lines. The statistically significant 2D-QSAR models ($r^2=0.8901$; $q^2=0.8130$; F test = 36.4635; $r^2$ se = 0.1696; $q^2$ se = 0.12212; pred_$r^2=0.4229$; pred_$r^2$ se = 0.4606 and $r^2=0.8763$; $q^2=0.7617$; F test = 31.8737; $r^2$ se = 0.1951; $q^2$ se = 0.2708; pred_$r^2=0.4386$; pred_$r^2$ se = 0.3950) were developed using molecular design suite (VLifeMDS 4.2). The study was performed with 18 compounds (data set) using random selection and manual selection methods used for the division of the data set into training and test set. Multiple linear regression (MLR) methodology with stepwise (SW) forward-backward variable selection method was used for building the QSAR models. The results of the 2D-QSAR models were further compared with 3D-QSAR models generated by kNN-MFA, (k-Nearest Neighbor Molecular Field Analysis) investigating the substitutional requirements for the favorable anticancer activity. The results derived may be useful in further designing novel imidazole-(benz)azole and imidazole-piperazine derivatives against breast (MCF-7) cell lines prior to synthesis.
Machine learning algorithms have made immense contributions in various fields including sonar and radar applications. Recently developed Cycle-Consistency Generative Adversarial Network (CycleGAN), a variant of GAN has been successfully used for unpaired image-to-image translation. We present a modified CycleGAN for translation of underwater ship engine sounds with high perceptual quality. The proposed network is composed of an improved generator model trained to translate underwater audio from one vessel type to other, an improved discriminator to identify the data as real or fake and a modified cycle-consistency loss function. The quantitative and qualitative analysis of the proposed CycleGAN are performed on publicly available underwater dataset ShipsEar by evaluating and comparing Mel-cepstral distortion, pitch contour matching, nearest neighbor comparison and mean opinion score with existing algorithms. The analysis results of the proposed network demonstrate the effectiveness of the proposed network.
Three-dimensional information of submarine topography was acquired by assembling DGPS and Echo Sounder, which is mainly used in the marine survey. However, the features of submarine topography, derived according to mechanical data, were confirmed using human eyes. Because the dredging capacity using a submarine surveying data influences harbor public affairs, analysis and the process method of surveying data is a very special element in construction costs. In this study, information on submarine topography is acquired by assembling DGPS and Echo Sounder. Moreover, the dredging capacity in harbor public affairs has been analyzed by the interpolation method: inverse distance to a power, kriging, minimum curvature, nearest neighbor, and radial basis function. Also, utilization of DGPS and Echo Sounder method in calculation of the dredging capacity have been confirmed by comparing and analyzing the dredging capacity and the actual one, as per each interpolation. According to this comparison result, in the case of applying Radial basis function interpolation and Kriging, 3.94 % and 4.61 % of error rates have been shown, respectively. In the case of the study for application of the proper interpolation, as per characteristics of submarine topography, is preceded in calculation of the dredging capacity relevant to harbor public affairs, it is expected that more speedy and correct calculation for the dredging capacity can be made.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.