• 제목/요약/키워드: k nearest neighbor

검색결과 650건 처리시간 0.024초

제약을 가진 최소근접을 찾는 이동질의의 효율적인 수행 (A Efficient Query Processing of Constrained Nearest Neighbor Search for Moving Query Point)

  • 반재훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 추계학술발표논문집 (하)
    • /
    • pp.1429-1432
    • /
    • 2003
  • This paper addresses the problem of finding a constrained nearest neighbor for moving query point(we call it CNNMP) The Nearest neighbor problem is classified by existence of a constrained region, the number of query result and movement of query point and target. The problem assumes that the query point is not static, as 1-nearest neighbor problem, but varies its position over time to the constrained region. The parameters as NC, NCMBR, CQR and QL for the algorithm are also presented. We suggest the query optimization algorithm in consideration of topological relationship among them

  • PDF

벡터양자화를 위한 FNNPDS 인코더의 VLSI 설계 (VLSI design of a FNNPDS encoder for vector quantization)

  • 김형철;심정보;조제황
    • 대한전자공학회논문지SD
    • /
    • 제42권2호
    • /
    • pp.83-88
    • /
    • 2005
  • 벡터양자화에서 고속 인코딩에 사용되는 기존 방법인 PDS(partial distance search)와 FNNS(fast nearest neighbor search)를 결합한 FNNPDS(fast nearest neighbor partial distance search)를 VISI로 구현하기 위한 설계 방법을 제안하고, 모의실험을 통해 FNNPDS가 다른 방법에 비해 보다 고속화가 이루어짐을 입증한다. 모의실험 방법은 임의의 입력벡터에 대해 최단거리 부호벡터를 찾는 타이밍도를 고찰하고, Lena와 Peppers 영상에 대한 입력벡터당 평균 클럭 사이클을 비교한다. 모의실험 결과에 의하면 FNNPDS의 클럭 사이클 수는 다른 방법들보다 $79.2\%\~11.7\%$ 감소되었다.

Nearest Neighbor Query Processing in the Mobile Environment

  • Choi Hyun Mi;Jung Young Jin;Lee Eung Jae;Ryu Keun Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.677-680
    • /
    • 2004
  • In the mobile environment, according to the movement of the object, the query finds the nearest special object or place from object position. However, because query object moves continuously in the mobile environment, query demand changes according to the direction attribute of query object. Also, in the case of moving of query object and simply the minimum distance value of query result, sometimes we find the result against the query object direction. Especially, in most road condition, as user has to return after reaching U-turn area, user rather spends time and cost. Therefore, in order to solve those problems, in this paper we propose the nearest neighbor method considering moving object position and direction for mobile recommendation system.

  • PDF

GAVaPS를 이용한 다수 K-Nearest Neighbor classifier들의 Feature 선택 (Feature Selection for Multiple K-Nearest Neighbor classifiers using GAVaPS)

  • 이희성;이제헌;김은태
    • 한국지능시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.871-875
    • /
    • 2008
  • 본 논문은 개체 변환 유전자 알고리즘을 (GAVaPS) 이용하여 k-nearest neighbor (k-NN) 분류기에서 사용되는 특징들을 선정하는 방법을 제시한다. 우리는 다수의 k-NN 분류기들을 사용하기 때문에 사용되는 특징들을 선정하는 문제는 매우 탐색 영역이 크고 해결하기 어려운 문제이다. 따라서 우리는 효과적인 특징득의 선정을 위해 일반적인 유전자 알고리즘 (GA) 보다 효율적이라고 알려진 개체군 변환 유전자 알고리즘을 사용한다. 또한 다수 k-NN 분류기를 개체군 변환 유전자 알고리즘으로 효과적으로 결합하는 방법을 제시한다. 제안하는 알고리즘의 우수성을 여러 실험을 통해 보여준다.

공간 네트워크 데이터베이스에서 실체화 기법을 이용한 범위 및 k-최근접 질의처리 알고리즘 (Range and k-Nearest Neighbor Query Processing Algorithms using Materialization Techniques in Spatial Network Databases)

  • 김용기;니하드 카림 초우더리;이현조;장재우
    • 한국공간정보시스템학회 논문지
    • /
    • 제9권2호
    • /
    • pp.67-79
    • /
    • 2007
  • 최근 LBS(location-based service) 및 텔레매틱스(telematics) 응용의 효율적인 지원을 위해, 유클리디언(Euclidean) 공간을 대신하여 실제 도로나 철도와 같은 공간 네트워크(network)를 고려한 연구가 활발하게 수행중이다. 그러나 기존 연구에서의 범위 질의 및 k-최근접 질의 처리 알고리즘은 범위나 k 값의 증가에 따라 검색에 필요한 노드 검색 및 거리 계산의 비용 증가로 인하여 선형적인 성능 감소를 보인다. 따라서, 본 논문에서는 공간 네트워크를 위한 기존 질의처리 알고리즘의 성능을 향상시키기 위해, 실체화 기법을 이용한 효율적인 범위 및 k-최근접 질의처리 알고리즘을 제안한다. 아울러, 기존 알고리즘과의 성능 비교를 통하여 제안하는 알고리즘이 우수함을 보인다.

  • PDF

K-NN과 최대 우도 추정법을 결합한 소프트웨어 프로젝트 수치 데이터용 결측값 대치법 (A Missing Data Imputation by Combining K Nearest Neighbor with Maximum Likelihood Estimation for Numerical Software Project Data)

  • 이동호;윤경아;배두환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권4호
    • /
    • pp.273-282
    • /
    • 2009
  • 소프트웨어 프로젝트 데이터를 이용한 각종 분석 예측 모델 생성시 직면하는 문제 중 하나는 데이터에 포함된 결측값이며 이에 대한 효과적인 방안은 결측값 대치 법이다. 대표적인 결측값 대치법인 K 최근접 이웃 대치법은 대치과정에서 결측값을 포함하는 인스턴스의 관측정보를 활용하지 못한다는 단점이 있다. 본 연구에서는 이러한 단점을 극복하기 위해 K 최근접 이웃 대치법과 최대 우도 추정법을 결합한 새로운 소프트웨어 프로젝트 수치 데이터용 결측값 대치법을 제안한다. 또한 결측값 대치법의 정확도를 비교하기 위한 새로운 측도를 함께 제안한다.

k-최근점 학습에 기반한 타동사-목적어 연어 사전의 최적화 (Optimization of Transitive Verb-Objective Collocation Dictionary based on k-nearest Neighbor Learning)

  • 김유섭;장병탁;김영택
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권3호
    • /
    • pp.302-313
    • /
    • 2000
  • 영한 기계번역에서 영어 문장의 동사구를 한국어로 정확하게 번역하기 위해서는 일반적으로 타동사와 목적어의 연어 관계를 이용한다. 본 논문에서는 k-최근점(k-nearest neighbor) 학습을 연어 관계에 적용하여 동사 번역을 선택하는 알고리즘을 제시하였는데 k-최근점 학습을 위해서 워드넷에서의 의미거리를 정의하여 사용하였다. 그리고 실시간 번역 시스템에 사용될 사전을 구성하기 위하여, 말뭉치로부터 타동사-목적어 쌍을 추출하여 학습예제를 구축하고, 이 예제의 크기를 번역률과 연관시켜 최적화시키는 알고리즘을 제시한다. 본 논문에서는 위의 알고리즘들을 사용하여 동사 'build'의 번역률을 약 90%로 유지하면서 사전의 크기를 최적화하였다.

  • PDF

분기 함수를 적용한 분산 최근접 휴리스틱 (A Distributed Nearest Neighbor Heuristic with Bounding Function)

  • 김정숙
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제29권7호
    • /
    • pp.377-383
    • /
    • 2002
  • 외판원 문제는 잘 알려진 NP-완전 문제로, 최적해(optimal value)를 구하는 다양한 알고리즘들이 개발되었다. 그러나 최악의 경우 지수 시간이 걸리므로 수행시간을 줄이는 다양한 방법들이 제안되고 있다. 최근접 휴리스틱 알고리즘은 최적해를 구하는 다른 알고리즘들에 비해 구조가 비교적 간단하다. 따라서 본 논문에서는 외판원 문제(Traveling Salesman Problem, TSP)의 최적해를 구할 수 있는 분기 함수(bounding function)를 적용한 분산 최근접 휴리스틱(nearest neighbor heuristic) 알고리즘을 PVM(Parallel Virtual Machine)에서 제공하는 마스터/슬래이브(master/slave) 모델을 사용하여 설계하고 구현하였다. 먼저 최적해를 찾는 수행 시간을 줄이기 위해 최적화 문제에서 좋은 성능을 보이는 분산 유전 알고리즘(distributed genetic algorithm)을 수행해 얻은 근사해(near optimal)를 초기 분기 함수로 사용한다. 특히 더욱 좋은 근사해를 구하고자 유전 연산자인 돌연변이를 새롭게 변형하여 적용하였다.

프로토타입 선택을 이용한 최근접 분류 학습의 성능 개선 (Performance Improvement of Nearest-neighbor Classification Learning through Prototype Selections)

  • 황두성
    • 전자공학회논문지CI
    • /
    • 제49권2호
    • /
    • pp.53-60
    • /
    • 2012
  • 최근접 이웃 분류에서 입력 데이터의 클래스는 선택된 근접 학습 데이터들 중에서 가장 빈번한 클래스로 예측된다. 최근접분류 학습은 학습 단계가 없으나, 준비된 데이터가 모두 예측 분류에 참여하여 일반화 성능이 학습 데이터의 질에 의존된다. 그러므로 학습 데이터가 많아지면 높은 기억 장치 용량과 예측 분류 시 높은 계산 시간이 요구된다. 본 논문에서는 분리 경계면에 위치한 학습 데이터들로 구성된 새로운 학습 데이터를 생성시켜 분류 예측을 수행하는 프로토타입 선택 알고리즘을 제안한다. 제안하는 알고리즘에서는 분리 경계 영역에 위치한 데이터를 Tomek links와 거리를 이용하여 선별하며, 이미 선택된 데이터와 클래스와 거리 관계 분석을 이용하여 프로토타입 집합에 추가 여부를 결정한다. 실험에서 선택된 프로토타입의 수는 원래 학습 데이터에 비해 적은 수의 데이터 집합이 되어 최근접 분류의 적용 시 기억장소의 축소와 빠른 예측 시간을 제공할수 있다.

다차원 인덱싱 구조에서의 k-근접객체질의 처리 방안 (k-Nearest Neighbor Query Processing in Multi-Dimensional Indexing Structures)

  • 김병곤;오성균
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권1호
    • /
    • pp.85-92
    • /
    • 2005
  • 최근에 데이터베이스 응용분야에서 내용기반의 검색이 가능한 이미지 데이터와 같은 다차원 정보 처리에 대한 관심이 고조되고 있다. 따라서 다차원 데이터를 효율적으로 저장하고. 사용자가 원하는 질의 결과를 신속히 제공하는 것이 중요한 연구분야이다 다차원의 데이터에 대한 질의는 대표적으로 영역질의 (Range query)와 최근접객체검색질의(Nearest Neighbor Query)로 나눌 수 있다. 본 논문에서는 $R^*-tree$와 같은 다차원의 인덱싱 구조에서 효율적이고 빠른 k-근접객체검색질의를 수행하기 위한 방안을 제시한다. k-근접객체검색질의는 질의 객체로부터 가장 근접한 k개의 객체를 반환하는 것이다. 본 논문은 이를 위하여 가지치기(Pruning) 기법을 이용하여 검색 공간을 줄이는 방법을 사용하였다. 실험을 통하여 제안된 전략의 오버헤드와 이득을 보였으며, 마지막으로 가장 효율적인 전략의 사용을 제안하였다.

  • PDF