• Title/Summary/Keyword: jump height

Search Result 123, Processing Time 0.026 seconds

The analysis of lower extremities injury on depth jump (Depth Jump 시 하지 관절 상해에 관한 운동역학적 분석)

  • So, Jae-Moo;Kim, Yoon-Ji;Lee, Jong-Hee;Seo, Jin-Hee;Chung, Yeon-Ok;Kim, Koang-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.127-142
    • /
    • 2005
  • The purpose of this study was to analysis biomechanics of the lower extremities injury the heights(40cm, 60cm, 80cm) of jump box as performed depth jump motion by 6 females aerobic athletes and 6 non-experience females students. The event of depth jump were set to be drop, landing and jump. The depth jump motions on the force plate were filmed using a digital video cameras, and data were collected through the cinematography and force plate. On the basis of the results analyzed, the conclusions were drawn as follows: 1. The landing time of skill group was shorter than unskill group at 40cm, 60cm drop height during drop-landing-jump phase especially. The landing time of 60cm drop height was significant between two group(p<.05). 2. The peak GRF of sagittal and frontaI direction following drop height improve was variety pattern and the peak vertical force of 40cm drop height was significantly(p<.05). 3. The magnitude of peak passive force was not increase to change the drop height. 4. The peak passive forces was significant at 40cm drop height between two groups(p<.05)

Change in Countermovement Jump Strategy by Varying Jump Height Based on Simplified Framework for Center of Mass Mechanics (반동을 이용한 수직 점프 시 높이 변화에 따른 운동역학 및 상변화 시점에서의 지면반력 벡터 변화)

  • Kim, Seyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.277-283
    • /
    • 2017
  • In this study, we investigated how a jumping strategy changes with an increase in the vertical jump height for a resultant ground reaction force (GRF) vector. We expected that the resultant force vector between two sequential motion phases (i.e., countermovement and push-off) of the countermovement jump would significantly change with the vertical jump height to take advantage of the resulting supportive force (i.e., an initial push-off force larger than the body weight) through the countermovement phase. Nine healthy young subjects were instructed to jump straight up to five different height levels ranging from 191 cm to 221 cm, and the kinematic and kinetic data were obtained in regular trials. The results showed that a lower center of mass position and larger resultant force vector were clearly observed in a higher jump, implying that the countermovement strategy changed with the vertical jump height to prepare for sufficient joint deviation and obtain a force advantage for larger push-off work.

The kinematic and kinetic analysis of lower extremities for male sports aerobic athletes during depth jumps - a case study (남자 스포츠 에어로빅스 선수의 Depth Jump시 하지관절에 대한 운동역학적 분석-사례 연구)

  • Kim, Yoon-Ji
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.259-274
    • /
    • 2005
  • The purpose of this study was to compare the kinematic and kinetic parameters of lower extremity joints between novice and experienced sports aerobic dancers during two heights of depth jumps. Four male dancers were participated in this study and they performed 40cm and 60cm height depth jump three times, respectively. Four ProReflex MCU cameras (100frame/sec) and a Kistler force plate (1000Hz) were used for data collection. The results indicated that the duration of contact phase of experienced group was shorter than that of novice group regardless of jump height. For minimum angle of hip, knee, and ankle joints, the novice group had tendency to decrease the angle but the experienced group had increased the joint angle with jump height. There was no difference of total ground reaction force between the groups but the reaction force had tendency to increase with jump height. Thus, this study implied that repetition of jump and landing may induce joint related injury and further study such as. EMG analysis of lower extremity can be needed to verify the relationship between injury and ground reaction force.

Effect of Ankle Taping Type and Jump Height on Balance during Jump Landing in Chronic Ankle Instability

  • Kim, Mikyoung;Kong, Byungsun;Yoo, Kyungtae
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.11 no.2
    • /
    • pp.2077-2089
    • /
    • 2020
  • Background: Chronic ankle instability is a common injury that decreases balance and negatively affects functional movements, such as jumping and landing. Objectives: To analyze the effect of taping types and jump heights on balance with eyes open and closed during jump landings in chronic ankle instability. Design: Within-subject design. Methods: The study involved 22 patients with chronic ankle instability. They performed both double-leg and single-leg drop jump landings using three conditions (elastic taping, non-elastic taping, and barefoot) on three different jump platforms (30, 38, and 46 cm). Balance was measured using the Romberg's test with eyes open and closed. Results: Interaction effect was not statistically significant. Balance with eyes open and closed was significantly improved in both the elastic taping and non-elastic taping conditions compared to the barefoot condition. There was no significant difference according to the jump height. Conclusion: Individuals with chronic ankle instability demonstrated increased balance ability with eyes open and closed when jump landing. Elastic taping and non-elastic taping on the ankle joint can positively affect balance during landing in individuals with chronic ankle instability.

The Effects of Landing Height on the Lower Extremity Injury Mechanism during a Counter Movement Jump (착지 후 점프 시 높이가 하지 관절의 변화와 부상기전에 미치는 영향)

  • Cho, Joon-Haeng
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.1
    • /
    • pp.25-34
    • /
    • 2012
  • The purpose of this study was to determine the effects of landing height on the lower extremity during a counter movement jump. Fourteen healthy male subjects (age: $27.00{\pm}2.94$ yr, height: $179.07{\pm}5.03$ cm, weight: $78.79{\pm}6.70$ kg) participated in this study. Each subject randomly performed three single-leg jumps after s single-leg drop landing (counter movement jump) on a force platform from a 20 cm and 30 cm platform. Paired t-test (SPSS 18.0; SPSS Inc., Chicago, IL) was performed to determine the difference in kinematics and kinetics according to the height. All significance levels were set at p<.05. The results were as follows. First, ankle and knee joint angles in the sagittal plane increased in response to increasing landing height. Second, ankle and knee joint angles in the frontal plane increased in response to increasing landing height. Third, there were no significant differences in the moment of each segment in the sagittal plane for the jumping height increment. Fourth, ankle eversion moment and knee valgus moment decreased but hip abduction moment increased for the jumping height increment. Fifth, Ankle and knee joint powers increased. In percentage contribution, the ankle joint increased but the knee and hip joints decreased at a greater height. Lastly, as jumping height increased, the power generation at the ankle joint increased. Our findings indicate that the height increment affect on the landing mechanism the might augment loads at the ankle and knee joints.

Analysis of the Differences of the Shock Absorption Strategy between Drop-Landing and Countermovement-Jump (드롭 착지와 착지 후 점프 시 충격흡수 기전의 차이 분석)

  • Cho, Joon-Haeng;Kim, Kyoung-Hun;Koh, Young-Chul
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.4
    • /
    • pp.379-386
    • /
    • 2012
  • The aim of this study was to investigate and identify the differences in lower extremity energy dissipation strategies between drop-landing and countermovement-jump maneuvers. Fourteen recreational athletes(Age : $23.3{\pm}2.1years$, Height : $172.3{\pm}4.0cm$, Weight : $69.2{\pm}4.7kg$) were recruited and instructed to perform drop-landing from 45 cm height and countermovement-jump from 45 cm to 20 cm height. The landing phase was taken as the time between initial contact and peak knee flexion. A motion-capture system consisting of eight infra-red cameras was employed to collect kinematics data at a sampling rate of 200 Hz and a force-plate was used to collect GRF data at a sampling rate of 2000 Hz. Paired t-test was performed to determine the difference in kinematics and kinetics variables between each task. During the countermovement-jump task, all of lower extremity joint ROM and the hip joint eccentric moment were decreased and the ankle joint plantarflexion moment was increased than drop-landing task. In the eccentric work during countermovement-jump task, the ankle joint displayed greater while knee and hip joint showed lesser than drop-landing. Therefore, the knee joint acted as the key energy dissipater during drop-landing while the ankle joint contributed the most energy dissipation during countermovement-jump. Our findings collectively indicated that different energy dissipation strategies were adopted for drop-landing and countermovement-jump.

Plyometrics and vibration: no clear winner on efficacy

  • Hubbard, R. Jeremy;Petrofsky, Jerrold S.;Lohman, Everett;Berk, Lee;Thorpe, Donna
    • Physical Therapy Rehabilitation Science
    • /
    • v.3 no.2
    • /
    • pp.86-92
    • /
    • 2014
  • Objective: Whole body vibration (WBV) and plyometrics are common training techniques which increase strength, blood flow, and lower body force and power. The effects these techniques have on sedentary population is unknown. It is our aim to assess the effectiveness of WBV and plyometrics on sedentary population. Design: Experimental study. Methods: Twenty-seven sedentary subjects were assigned to either the control group, jumping only group, or jumping with vibration group. Jump height (myotest or vertec), velocity, force, blood lactates, and rating of perceived exertion (RPE). Subjects were measured on the initial, seventh, and eighteenth visits. Control group attended measurements only. Jumping only and jumping with vibration groups performed jumping from a vibrating platform to a surface 7 1/2 inches higher for 3 bouts of 20 seconds. Each subject in jumping only and jumping with vibration groups attended three times per week for six weeks. Vibration was set at 40 Hz and 2-4 mm of displacement. Results: There was no significant change among groups in force, velocity, vertec height, and myotest height. However there was a significant increase in vertec height from initial to final measure (p<0.05) for jumping with vibration group. RPE was significantly higher between control group and jumping with vibration group after intervention (p<0.05). Conclusions: WBV with vibration increased jump height. Jumping with vibration group experienced increased exertion than for controls. WBV with plyometrics had no effect on force, velocity, blood lactates, or calculated jump height. Further studies controlling for initial measure of blood lactates and using an external focus may be necessary to elicit velocity, force and jump height changes.

Does Kinesio Taping Improve Vertical Jumping Performance?

  • Lim, Hyoung-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.5
    • /
    • pp.269-273
    • /
    • 2016
  • Purpose: This study was conducted to examine the effect of kinesio taping (KT) on vertical jumping performance. Methods: Young women (n=24) performed vertical jumping under three conditions: kinesio taping, placebo taping, and no taping. All tapes were applied to both quadriceps and the gastrocnemius of the subjects. Vertical jump height and power were measured using an OptoGait, and the non-parametric Friedman test was used to identify differences between conditions. Results: No significant differences in maximum jump height or peak jump power between were observed between taping conditions. Conclusion: The results showed that KT did not facilitate muscle performance by generating higher jumping power or yielding a better jumping performance. As the functional performance is related to muscle strength, this finding may be explained by the fact that KT has no effects on muscle strength.

The Acute Effects of Dynamic and Static Stretching on Jump Height and Muscle Activity (동적 및 정적스트레칭이 점프높이와 근활성도에 미치는 급성효과)

  • Yang, Dae-Jung;Jeong, Yong-Sik
    • Journal of Digital Convergence
    • /
    • v.11 no.8
    • /
    • pp.265-272
    • /
    • 2013
  • The purpose of this study was to provide a foundation for the methods of stretching in sports activities. The subjects were normal adults, the applied exercise was dynamic and static stretching and the research methods were measuring the jump height and muscle activity during jumping with subsequent data comparison and analysis. Twenty normal adults were randomly divided into 2 groups, and each group performed dynamic or static stretching. Jump height and the vastus lateralis and gastrocnemius muscle activities were measured during jumping, which was performed immediately before and after stretching. Statistical analysis was performed using an analysis of covariance. The results indicated that dynamic stretching was more effective than static stretching with respect to both jump height (p<.05) and muscle activity of the vastus lateralis (p<.05). Consequently, it was believed that dynamic stretching should be applied as a warm-up exercise for athletes who need to build and maintain high muscle strength.

The Effects of Chronic Ankle Instability on Postural Control during Forward Jump Landing (전방 점프 착지 시 만성 발목 불안정성이 자세 조절에 미치는 영향)

  • Kim, Kew-wan;Jeon, Kyoungkyu;Park, Seokwoo;Ahn, Seji
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.1
    • /
    • pp.9-16
    • /
    • 2022
  • Objective: The purpose of this study was to investigate how the chronic ankle instability affects postural control during forward jump landing. Method: 20 women with chronic ankle instability (age: 21.7 ± 1.6 yrs, height: 162.1 ± 3.7 cm, weight: 52.2 ± 5.8 kg) and 20 healthy adult women (age: 21.8 ± 1.6 yrs, height: 161.9 ± 4.4 cm, weight: 52.9 ± 7.2 kg) participated in this study. For the forward jump participants were instructed to stand on two legs at a distance of 40% of their body height from the center of force plate. Participants were jump forward over a 15 cm hurdle to the force plate and land on their non-dominant or affected leg. Kinetic and kinematic data were obtained using 8 motion capture cameras and 1 force plates and joint angle, vertical ground reaction force and center of pressure. All statistical analyses were using SPSS 25.0 program. The differences in variables between the two groups were compared through an independent sample t-test, and the significance level was to p < .05. Results: In the hip and knee joint angle, the CAI group showed a smaller flexion angle than the control group, and the knee joint valgus angle was significantly larger. In the case of ankle joint, the CAI group showed a large inversion angle at all events. In the kinetic variables, the vGRF was significantly greater in the CAI group than control group at IC and mGRF. In COP Y, the CAI group showed a lateral shifted center of pressure. Conclusion: Our results indicated that chronic ankle instability decreases the flexion angle of the hip and knee joint, increases the valgus angle of the knee joint, and increases the inversion angle of the ankle joint during landing. In addition, an increase in the maximum vertical ground reaction force and a lateral shifted center of pressure were observed. This suggests that chronic ankle instability increases the risk of non-contact knee injury as well as the risk of lateral ankle sprain during forward jump landing.