• Title/Summary/Keyword: journal bearing

Search Result 6,923, Processing Time 0.034 seconds

Optimum Design of Journal Bearing Using Simulated Annealing Method (Simulated Annealing법을 이용한 저널베어링의 최적설계)

  • 구형은;송진대;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.121-126
    • /
    • 2003
  • This paper describes the optimum design for journal bearing by using simulated annealing method. Simulated annealing algorithm is an optimum design method to calculate global and local optimum solution. Dynamic characteristics of a journal bearing are calculated by using finite difference method (FDM), and these values are used for the procedure of journal bearing optimization. The objective is to minimize the resonance response (Q factor) of the simple rotor system. Bearing clearance and length to diameter ratio are used as the design variables.

  • PDF

A Review on the Design of a Tilting Pad Journal Bearing for a 1.2MW Turbo-blower (1.2MW급 터보블로워용 틸팅패드 저널베어링의 설계에 관한 고찰)

  • Jo, Hyeon-Min;Jung, Hoon-Hyung;Kim, Chae-Sil;Cho, Soo-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.26-31
    • /
    • 2011
  • This article provides the systematic design methodology for a tilting pad journal bearing. First the dynamic factors for the bearing are selected with the critical speed analysis. The pad bearing is then designed to have its best mechanical efficiency by simulations with changing of the number of pad and the lubricant flow rate with meeting the design specifications such as metal temperature, clearance and so on. And the simulation results are reviewed to compare with an experimental test. Finally the stability of rotor with the designed bearing is investigated. This methodology is successfully applied to the rotor for 1.2MW turbo-blower.

Basic Characteristics of a Self-Compensated Hydrostatic Journal Bearing (자기 보상형 유정압 저어널 베어링의 기본 특성)

  • Park Chun Hong;Lee Young Joon;Hong Seong Wook;Lee Husang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.159-166
    • /
    • 2005
  • A self-compensated water-hydrostatic bearing is well known to have advantages in stiffness. In this paper, its concept is extended to a hydrostatic journal bearing for achieving higher stiffness. The finite element method is applied to analyze the load characteristics of the self-compensated hydrostatic journal bearing. The analysis results reveal that the self-compensated journal bearing has higher load capacity and higher stiffness than conventional, fixed capillary journal bearings. and that this benefit degrades in the case of high eccentricity. Thus, a spindle system with self-compensated journal bearings must be designed to ensure a sufficiently large load capacity. A rectangular type capillary is also introduced with consideration of the practical application of the self-compensated hydrostatic journal bearing. Theoretical analysis results show that the rectangular type capillary is more beneficial than conventional annular type capillaries in practical use. The experimental verification on the analysis method is made to show that the experimental results are in good agreement with theoretical results.

An Analysis of Herringbone Groove Journal Bearing Considering Groove Shape (그루브형상을 고려한 빗살무늬저널베어링의 유한요소해석)

  • 신동우;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.162-169
    • /
    • 1999
  • Herringbone groove journal bearing (HGJB) is developed to improve the static and dynamic performances of hydrodynamic journal bearing. Conventional studies on HGJB were based on the Narrow Groove theory assuming that the number of grooves approaches infinity. In this study, an oil lubricated HGJB is analyzed using Finite Element Method. Load carrying capacity, attitude angle, stiffness and damping coefficients are obtained numerically for various bearing configurations especially for the inclined width ratio and asymmetric ratio and compared with the results obtained using Finite Volume Method. The bearing load and stability characteristics are dependent on geometric parameters such as inclined width ratio, asymmetric ratio, groove depth ratio, groove width ratio, groove angle.

  • PDF

Thermohydrodynamic Lubrication Analysis of Turbocharger Journal Bearing Involving the Mixture of Water within Engine Oil (엔진오일에 물이 혼합될 때 터보챠져 저어널 베어링의 열유체윤활 해석)

  • Chun, Sang-Myung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.131-140
    • /
    • 2012
  • In this study, using the governing equation for thermohydrodyamic lubrication involving the homogeneous mixture of incompressible fluid derived by based on the principle of continuum mechanics, it is discussed the effects of water within engine oil on the performance of high speed journal bearing of a turbocharger. The governing equations are the general equations being able to be applied on the mixture of Newtonian fluid and non- Newtonian fluid. Here, the fluid viscosity index, n of power-law non-Newtonian fluid is supposed to be 1 for the application of the journal bearing in a turbocharger lubricated with the mixture of two Newtonian fluid, for example, water within engine oil. The results related with the bearing performance are shown that the bearing friction is to decrease and the side leakage and bearing load increase as increasing the water content in an engine oil.

A Study on the THD Performance of a Large Tilting Pad Journal Bearing Including the Inlet Pressure Effect (선단압력을 고려한 대형 틸팅패드 저어널 베어링의 THD 성능에 관한 연구)

  • 하현천;김경웅;김영춘;김호종
    • Tribology and Lubricants
    • /
    • v.10 no.2
    • /
    • pp.30-38
    • /
    • 1994
  • The thermohydrodynamic(THD) performance of a large tilting pad journal bearing is investigated both theoretically and experimentally. The theory takes into account the three dimensional variation of lubricant viscosity and eddy viscosity, and the inlet pressure. Owing to the inlet pressure effect, the film pressure and load capacity are increased but the mixing temperature and bearing surface temperature are decreased. The continuous distribution of the film pressure and film thickness and the bearing surface temperature are measured along with the shaft speed and the bearing load, and they are compared with the theoretical results. The results obtained by the experiment are in good agreement with those by the theory including the inlet pressure effect. It is suggested that the three dimensional turbulent THD analysis including the inlet pressure effect is very useful to predict the performance of the large tilting pad journal bearing more accurately.

Study on Bearing Performance Involving the Mixture of Water within Engine Oil in a Turbocharger Journal Bearing (터보챠저 저어널 베어링에서 물과 윤활유가 혼합될 때 베어링 성능에 관한 연구)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.27 no.4
    • /
    • pp.183-192
    • /
    • 2011
  • In this study, using the governing equations for thermohydrodyamic lubrication involving the homogeneous mixture of incompressible fluid derived by based on the principle of continuum mechanics, it is discussed the effects of water dispersed within engine oil on the performance of high speed journal bearing of a turbocharger. The governing equations are the general equations being able to be applied on the mixture of Newtonian fluid and non-Newtonian fluid. Here, the fluid viscosity index, n of power-law non-Newtonian fluid is supposed to be 1 for the application of the journal bearing on a turbocharger lubricated with the mixture of two Newtonian fluids, water dispersed within engine oil. The results related with the bearing performance are showed that the friction force and bearing load capacity decrease as increasing the volume percent of water.

Characteristics of a Coupled Gas Lubricated Bearing for a Scaled-Up Micro Gas Turbine

  • Lee, Yong Bok;Kwak, Hyunduck;Kim, Chang Ho;Jang, Gun Hee
    • KSTLE International Journal
    • /
    • v.1 no.2
    • /
    • pp.107-112
    • /
    • 2000
  • In case of the limitation of Deep RIE fabrication far Micro Gas Turbine, bearing aspect ratio is limited in very small value. The characteristics such as pressure distribution, load capacity and non-linearity of a short bearing of L/D=0.083 and a conventional bearing of L/D=1.0 with coupled boundary effects are investigated for Micro Gas Turbine bearings. The coupled effect was analyzed by mass conservation at coupled end area. The results, increasing load capacity and non-linearity due to the coupled effect of thrust and journal bearing, are obtained and the selection of journal bearing type is discussed.

  • PDF

An Analysis of Load Characteristics of Air-Lubricated Herringbone Groove Journal Bearing By Finite Element Method (공기윤활 빗살무늬 저널베어링의 부하특성에 대한 유한요소해석)

  • 박신욱;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.353-362
    • /
    • 2000
  • Herringbone groove journal bearing (HGJB) is developed to improve the static and dynamic performances of hydrodynamic journal bearing. In this study, static and dynamic compressible isothermal lubrication problems are analyzed by the finite element method together with the Newton-Raphson iterative procedure. This analysis is introduced for prediction of the static and dynamic characteristics of air lubricated HGJB for various bearing configurations. The bearing load characteristics and dynamic characteristics are dependent on geometric parameters such as asymmetric ratio, groove depth ratio, groove width ratio and groove angle.

  • PDF

Design of an Elastomeric Bearing for a Helicopter Rotor Hub by Non-linear Finite Element Method (비선형 유한요소법을 이용한 헬리콥터 로터허브용 탄성체베어링 설계)

  • Kim, Hyun-Duk;Yoo, Si-Yoong;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.612-619
    • /
    • 2010
  • In this paper, an elastomeric bearing for a helicopter rotor hub is designed using nonlinear finite element method. The elastomeric bearing is the main component of the helicopter rotor hub that acts as a hinge to three motions(flapping, lagging and pitching) of rotor blade. The elastomeric bearing consists of rubber and metal plates. The stiffness design of the elastomeric bearing is important because elastic deformation of rubber is served to hinge. Accordingly, the elastomeric bearing is designed to satisfy the stiffness requirements for rotor hub bearing. In this study, a FE model generation algorithm is developed and stiffness characteristic of a rubber plate is analyzed for an efficient design of the spherical elastomeric bearing. It is proven that the elastomeric bearing satisfies stiffness requirements of the spherical bearing for a helicopter rotor hub.