• Title/Summary/Keyword: joint transmit and receive antenna selection

Search Result 7, Processing Time 0.022 seconds

Joint Relay-and-Antenna Selection and Power Allocation for AF MIMO Two-way Relay Networks

  • Wang, xiaoxiang;Zhou, Jia;Wang, DongYu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1016-1033
    • /
    • 2016
  • In this paper, we present a joint relay-and-antenna selection and power allocation strategy for multiple-input multi-output (MIMO) amplify-and-forward (AF) two-way relay networks (TWRNs). In our approach, we select the best transmit and receive antennas at the two sources, a best relay and a best transmit and receive antenna at the selected relay based on maximizing the minimum of the end-to-end received signal-to-noise-ratios (SNRs) under a total transmit power constraints. We obtained the closed-form solution for the optimal power allocation firstly. Then with the optimal allocation solution we found, we can reduce the joint relay-and-antenna selection to a simpler problem. Besides, the overall outage probability is investigated and a tight closed-form approximation is derived, which provides a method to evaluate the outage performance easily and fast. Simulation results are presented to verify the analysis.

Analysis of Antenna Selection in Two-way Relaying MIMO Systems with CPM Modulation

  • Lei, Guowei;Chen, Hailan;Liu, Yuanan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.1140-1155
    • /
    • 2021
  • Up to now, many state-of-arts have been proposed for two-way relaying system with linear modulations. The performances of antenna selection (AS) at both transmit and relay nodes need to be investigated in some two-way relaying multiple-input multiple-output (TWRM) systems. In this paper, the goal is focused on the study of nonlinear modulations, i.e., continuous phase modulation (CPM) in TWRM systems. Firstly, the joint phase trellis are simplified by reversed Rimoldi processing so as to reduce the systems' complexity. Then the performances of joint transmit and receive antenna selection (JTRAS) with CPM modulations in two-way relaying MIMO systems are analyzed. More exactly, the pair wise probability (PEP) is used to evaluate the error performance based on the CPM signal matrix, which is calculated in terms of Laurent expression. Since the channels subject to two terminal nodes share common antennas at relay node R in multiple-access scheme, we revise the JTRAS algorithm and compare it to existing algorithm via simulation. Finally, the error performances for various schemes of antenna selection are simulated and compared to the analysis in this paper.

Analysis of Joint Transmit and Receive Antenna Selection in CPM MIMO Systems

  • Lei, Guowei;Liu, Yuanan;Xiao, Xuefang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1425-1440
    • /
    • 2017
  • In wireless communications, antenna selection (AS) is a widely used method for reducing comparable cost of multiple RF chains in MIMO systems. As is well known, most of literatures on combining AS with MIMO techniques concern linear modulations such as phase shift keying (PSK) and quadrature amplitude modulation (QAM). The combination of CPM and MIMO has been considered an optimal choice that can improve its capacity without loss of power and spectrum efficiency. The aim of this paper is to investigate joint transmit and receive antenna selection (JTRAS) in CPM MIMO systems. Specifically, modified incremental and decremental JTRAS algorithms are proposed to adapt to arbitrary number of selected transmit or receive antennas. The computational complexity of several JTRAS algorithms is analyzed from the perspective of channel capacity. As a comparison, the performances of bit error rate (BER) and spectral efficiency are evaluated via simulations. Moreover, computational complexity of the JTRAS algorithms is simulated in the end. It is inferred from discussions that both incremental JTRAS and decremental JTRAS perform close to optimal JTRAS in BER and spectral efficiency. In the sense of practical scenarios, adaptive JTRAS can be employed to well tradeoff performance and computational complexity.

Link Adaptation for Full Duplex Systems

  • Kim, Sangchoon
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.92-100
    • /
    • 2018
  • This paper presents a link adaptation scheme for adaptive full duplex (AFD) systems. The signal modulation levels and communication link patterns are adaptively selected according to the changing channel conditions. The link pattern selection process consists of two successive steps such as a transmit-receive antenna pair selection based on maximum sum rate or minimum maximum symbol error rate, and an adaptive modulation based on maximum minimum norm. In AFD systems, the antennas of both nodes are jointly determined with modulation levels depending on the channel conditions. An adaptive algorithm with relatively low complexity is also proposed to select the link parameters. Simulation results show that the proposed AFD system offers significant bit error rate (BER) performance improvement compared with conventional full duplex systems with perfect or imperfect self-interference cancellation under the same fixed sum rate.

Low-complexity Joint Transmit/Receive Antenna Selection Algorithm for Multi-Antenna Systems (다중 안테나 시스템을 위한 낮은 복잡도의 송/수신안테나 선택 알고리즘)

  • Son, Jun-Ho;Kang, Chung-G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10A
    • /
    • pp.943-951
    • /
    • 2006
  • Multi-input-multi-output (MIMO) systems are considered to improve the capacity and reliability of next generation mobile communication. However, the multiple RF chains associated with multiple antennas are costly in terms of size, power and hardware. Antenna selection is a low-cost low-complexity alternative to capture many of the advantages of MIMO systems. We proposed new joint Tx/Rx antenna selection algorithm with low complexity. The proposed algorithm is a method selects $L_R{\times}L_T$ channel matrix out of $L_R{\times}L_T$ entire channel gain matrix where $L_R{\times}L_T$ matrix selects alternate Tx antenna with Rx antenna which have the largest channel gain to maximize Frobenius norm. The feature of this algorithm is very low complexity compare with Exhaustive search which have optimum capacity. In case of $4{\times}4$ antennas selection out of $8{\times}8$ antennas, the capacity decreases $0.5{\sim}2dB$ but the complexity also decreases about 1/10,000 than optimum exhaustive search.

Joint Destination-Relay Selection and Antenna Mode Selection in Full-Duplex Relay Network

  • Tang, Yanan;Gao, Hui;Su, Xin;Lv, Tiejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.2831-2847
    • /
    • 2017
  • In this paper, a joint destination-relay selection and antenna mode selection scheme for full-duplex (FD) relay network is investigated, which consists of one source node, N FD amplify-and-forward (AF) relays and M destination nodes. Multiple antennas are configured at the source node, and beamforming technique is adopted. Two antennas are employed at each relay, one for receiving and the other for transmitting. Only one antenna is equipped at each destination node. In the proposed scheme, the best destination node is firstly selected according to the direct links between the source node and destination nodes. Then the transmit and receive mode of two antennas at each relay is adaptively selected based on the relaying link condition. Meanwhile, the best relay with the optimal Tx/Rx antenna configuration is selected to forward the signals. To characterize the performance of the proposed scheme, the closed-form expression of the outage probability is derived; meanwhile, the simple asymptotic expressions are also obtained. Our analysis shows that the proposed scheme obtains the benefits of multi-relay diversity and multi-destination diversity. Moreover, extra space diversity in the medium SNR region can be achieved due to the antenna selection at the relay. Finally, Monte-Carlo simulations are provided to consolidate the analytical results, and show the effectiveness of the proposed scheme.

Link selection based on switching between full-duplex and half-duplex modes

  • Kim, Sangchoon
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • Multiple-input multiple-output systems can achieve a full sum rate (SR) via full duplex (FD). However, its performance is degraded by self-interference (SI) that occurs between the transmitter and receiver at the same node and thus is constrained by error floors. Conversely, half duplex (HD) can avoid the SI albeit at lower spectral efficiency, and the slope of its error curve is determined by the diversity order. In this study, a link selection scheme based on switching between FD and HD is examined as a simple method to improve the bit error rate (BER) performance of FD systems. In the proposed link selection algorithm, either FD or HD is selected based on the received minimum distance and signal-to-interference plus noise ratio. Simulation results indicate that the proposed hybrid FD/HD switching system offers significant BER performance improvement when compared with that of the conventional FD and FD based on only the received minimum distance under the same fixed SR. Under relatively sufficient SI cancellation, it is demonstrated to outperform the HD with a diversity advantage in low and medium signal-to-noise ratio region.