• Title/Summary/Keyword: joint resistance

Search Result 567, Processing Time 0.036 seconds

A study of joint resistance between (Bi, Pb$)_{2}$$Sr_{2}$$Ca_{2}$$Cu_{3}$$O_{x}$ tapes ((Bi, Pb$)_{2}$$Sr_{2}$$Ca_{2}$$Cu_{3}$$O_{x}$선재간의 접합저항 연구)

  • 김정호;김규태;주진호;최세용;나완수;강형구;고태국;하홍수;오상수
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.123-125
    • /
    • 2003
  • We joined 19-multifilamentary (Bi, Pb)$_2$Sr$_2$Ca$_2$Cu$_3$O$_{x}$ Superconducting tapes and fabricated double-pancake coils by using resistive- and superconducting-joint methods. The joint resistance of the coils were characterized by the field decay technique and standard four-probe method. It was evaluated that joint resistance was 3.21$\times$10$^{-11}$ $\Omega$ in the superconducting-joint coil, which is approximately 4 orders of magnitude smaller than that in the resistive-joint coil (107$\times$10$^{-9}$ $\Omega$). The low value of joint resistance obtained by superconducting-joint is expected to be suitable for the practical applications in the persistent current mode.e.

  • PDF

Assessment of pull-out behavior of tunnel-type anchorages under various joint conditions

  • Junyoung Ko;Hyunsung Lim;Seunghwan Seo;Moonkyung Chung
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.71-81
    • /
    • 2024
  • This study analyzes the pull-out behavior of tunnel-type anchorage under various joint conditions, including joint direction, spacing, and position, using a finite element analysis. The validity of the numerical model was evaluated by comparing the results with a small-scaled model test, and the results of the numerical analysis and the small-scaled model test agree very well. The parametric study evaluated the quantitative effects of each influencing factor, such as joint direction, spacing, and position, on the behavior of tunnel-type anchorage using pull-out resistance-displacement curves. The study found that joint direction had a significant effect on the behavior of tunnel-type anchorage, and the pull-out resistance decreased as the displacement level increased from 0.002L to 0.006L (L: anchorage length). It was confirmed that the reduction in pull-out resistance increased as the number of joints in contact with the anchorage body increased and the spacing between the joints decreased. The pull-out behavior of tunnel-type anchorage was thus shown to be significantly influenced by the position and spacing of the rock joints. In addition, it is found that the number of joints through which the anchorage passes, the wider the area where the plastic point occurs, which leads to a decrease in the resistance of the anchorage.

Component method model for predicting the moment resistance, stiffness and rotation capacity of minor axis composite seat and web site plate joints

  • Kozlowski, Aleksander
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.469-486
    • /
    • 2016
  • Codes EN 1993 and EN 1994 require to take into account actual joint characteristics in the global analysis. In order to implement the semi-rigid connection effects in frame design, knowledge of joint rotation characteristics ($M-{\phi}$ relationship), or at least three basic joint properties, namely the moment resistance $M_R$, the rotational stiffness $S_j$ and rotation capacity, is required. To avoid expensive experimental tests many methods for predicting joint parameters were developed. The paper presents a comprehensive analytical model that has been developed for predicting the moment resistance $M_R$, initial stiffness $S_{j.ini}$ and rotation capacity of the minor axis, composite, semi-rigid joint. This model is based on so-called component method included in EN 1993 and EN 1994. Comparison with experimental test results shows that a quite good agreement was achieved. A computer program POWZ containing proposed procedure were created. Based on the numerical simulation made with the use of this program and applying regression analysis, simplified equations for main joint properties were also developed.

Estimation of joint and index dissipation in HTS tape (고온초전도 선재의 접합 및 인덱스손실 평가)

  • 김정호;임준형;장석헌;김규태;주진호;최세용;나완수;강형구;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.59-62
    • /
    • 2003
  • We fabricated two HTS closed coils by using resistive-joint method and the joint resistance of the coil was estimated by field decay technique at 77 K. In addition, we used the Runge-kutta method for the numerical analysis to estimate the decay properties. The joint resistances were evaluated as a function of critical current of HTS closed coil and external field strength of excitation coil. It was observed that joint resistance was independent of critical current and external field strength. It was estimated that joint resistance was 8.0$\times$10$^{-9}$ $\Omega$ to 11.9$\times$10$^{-9}$ $\Omega$ for coils of contact length for 7 cm.

  • PDF

Analysis of the DC Resistance of the Butt Joint using the Random Contact Patterns of Strands

  • Lee, Ho-Jin;Lee, Sang-Il;Lee, Bong-Sang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.4
    • /
    • pp.17-21
    • /
    • 2004
  • The butt joint was verified to satisfy the thermal stability of the ITER magnet system through the ITER CS model coil test. Since the contact area in the butt joint is limited to the cross section of the cable, it is necessary to analyze and control the joining parameters precisely for improving the DC resistance. It is difficult to simulate the cables, which are composed of a lot of strands, as three-dimensional models using the commercial code. The random numbers were used to simulate many kinds of contact patterns of the strands on the bonding surface for calculating the bonding area and the DC resistance of the butt joint. The calculated DC resistance decreases with an increase of cable filling factor in terminal. The calculated DC resistance of a 0.9 cable filling factor is about 0.48 n-Ohm, which is about one-tenth of that in the CS model coil test when not considering the electrical contact resistance. From this difference, the electrical contact resistance between the strands and copper sheet was calculated.

Joint Shear Behavior Prediction for RC Beam-Column Connections

  • LaFave, James M.;Kim, Jae-Hong
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.57-64
    • /
    • 2011
  • An extensive database has been constructed of reinforced concrete (RC) beam-column connection tests subjected to cyclic lateral loading. All cases within the database experienced joint shear failure, either in conjunction with or without yielding of longitudinal beam reinforcement. Using the experimental database, envelope curves of joint shear stress vs. joint shear strain behavior have been created by connecting key points such as cracking, yielding, and peak loading. Various prediction approaches for RC joint shear behavior are discussed using the constructed experimental database. RC joint shear strength and deformation models are first presented using the database in conjunction with a Bayesian parameter estimation method, and then a complete model applicable to the full range of RC joint shear behavior is suggested. An RC joint shear prediction model following a U.S. standard is next summarized and evaluated. Finally, a particular joint shear prediction model using basic joint shear resistance mechanisms is described and for the first time critically assessed.

Structural Performance of Seismic Resistance Capacity of Carbon Sheet-Angle Retrofitting Method in Wall-Slab Joint (탄소섬유와 L형강을 이용한 벽-슬래브 접합부의 보강성능)

  • Roh Gong-Ki;Park Tae-Won;Park Hyun-Soo;Chung Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.65-68
    • /
    • 2004
  • In the seismical capacity evaluation for RC structure wall-slab joint is very important factor. Because lateral load is resistance element and gravity load resistance element are acted mutually in the wall-slab joint. In this paper, to improve the seismic capacity of the wall-slab joint in the existing wall type apartments experiment which improve and retrofit a seismic capacity by unequal angle bracing and carbon sheet attachment are carried out. These methods are also economic and simple in mitigating seismic hazard, improve earthquake-resistance performance, and reduce risk level of building occupants. From the experimental results, the change of strength, degration of stiffness, and energy dissipation are evaluated. It can be concluded that these methods are effective in improving the seismic performance.

  • PDF

A Study on the Basic Characteristics of Persistent Current Mode Operation for Small Scale High Temperature Superconducting Coil with No-insulation Winding Method (No-insulation 기법을 적용한 소용량 고온 초전도 코일의 영구전류 특성에 관한 연구)

  • Lee, T.S.;Lee, W.S.;Choi, S.;Jo, H.C.;Kim, H.J.;Lee, J.;Kang, J.S.;Kwon, O.J.;Lee, H.G.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.23-27
    • /
    • 2012
  • This paper aims to evaluate the feasibility of using no-insulation High Temperature Superconducting (HTS) coil in persistent current mode system. A HTS coil in persistent current mode system usually includes one or more non-superconducting joints in its circuit. And the current decaying rate of the coil is affected by the resistance of joint in persistent current circuit. If the resistance of joint is large, decaying rate of the current drastically increases. Therefore, reducing the joint resistance of the HTS coil is very important in persistent current mode system. In this paper, the no-insulation HTS coil is suggested as a way to reduce the joint resistance with the embedded parallel contact resistance naturally made by no-insulation winding method. Two small coils are fabricated with insulation and no-insulation winding method, and persistent current mode system experiment of each coil is preformed and analyzed.

The Parameter Study on the Characteristics of Axial Force in Turnout with Continuous Welded Rail (분기부(分岐部) 장대(長大)레일화시의 축력거동특성(軸力擧動特性) 해석(解析))

  • Kim, Doo-Hwan;Ko, Sang-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.163-174
    • /
    • 2001
  • This paper is to study the characteristics of axial force behavior that operates to the part of turnout when it makes the turnout and the continuous welded rail unifying. The study is to model by using the 50kgN rail No. 15 turnout used in the domestic national railway and the UIC60 rail No. 18 turnout used in the rapid transit railway as the finite elements for analyzing the axial force behavior of the turnout by the continuous welded rail. It is to analyze the characteristics of behavior according to the change of creep resistance, ballast resistance and the change of parameter valuables of heel joint by the axial force simulation in making the continuous welded rail and then, it is to present the result. As the result of research on the parameter valuables through the analysis, it shows that the maximum axial force of turnout by the continuous welded rail are largely subordinated to the maximum resistance of heel joint and the fitting devices than the ballast resistance. Also it shows that the maximum axial force produced changes a lot according to the characteristics of creep resistance of the fitting part and the ballast resistance.

  • PDF

Influence of Joint on Retrofitting Effect by Exterior Steel Frames of Existing RC Buildings (외부접합공법의 내진보강효과에 미치는 접합부의 영향)

  • Ahn, Choong Weon;Min, Chan Gi;Noh, Eun Choul;Han, Hong Soo;Kim, Tae Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.183-194
    • /
    • 2015
  • In this paper, Nonlinear Static Pushover analysis method(NSP) is proposed which apply to RC buildings reinforced by external retrofit for seismic performance. Based on previous analysis and research, NSP is more developed by connection nonlinearity according to shear resistance mechanism such as dowel and adhesive resistance as major shear resistance elements. According to the proposed method, structural analysis for example buildings was carried out to evaluate seismic performance of buildings. And, it was confirmed that depending on shear strain and characteristics of joint resistant of external retrofitting are different from internal retrofitting. Furthermore, the strength reduction coefficient of the anchor needs to be considered at the joint design.