• Title/Summary/Keyword: joint filler

Search Result 112, Processing Time 0.022 seconds

Characterization of resistive-and supercodncuting-joint of Bi-2223 superconductor tape (Bi-2223 초전도선재의 상전도- 및 초전도-접합부 특성평가)

  • 김정호;지봉기;박형상;임준형;오승진;주진호;황보훈;나완수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.3
    • /
    • pp.247-253
    • /
    • 2000
  • We evaluated the electric properties of Bi-2223 jointed tapes processed by both resistive-and superconducting-joint methods. For resistive-joint. filler materials of wood metal Pb/Sn. In and silver paste were used whereas for superconductive-joint lap joint method was used. In the resistive joint tape. critical transport property(CCR) n-value and contact resistance were observed to be in the range of 10-85% 1-8,9. and 0.71x10$\^$-6/-0.13x10$\^$-6/Ω, respectively. depending on their filler materials. Specifically it is believed that the electrical properties of resistive joint tape are significantly related to the resistivity of filler materials. On the other hand the CCR of superconductin joint type was varied 55 to 85% with uniaxial pressure probably due to the irregular microstructure in the transition region.

  • PDF

Analysis of Bonding Characteristics of Ag-System Brazing Filler Metal (은계 필러메탈 브레이징 접합부의 특성 분석)

  • Soon-Gil Lee;Hwa-In Lee;Jin-Oh Son;Gwang-Il Ha;Bon-Heun Koo
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.214-221
    • /
    • 2023
  • As a filler metal for lowering the melting point of Ag, many alloy metal candidates have emerged, such as cadmium, with zinc, manganese, nickel, and titanium as active metals. However, since cadmium is known to be harmful to the human body, Cd-free filler metals are now mainly used. Still, no study has been conducted comparing the characteristics of joints prepared with and without cadmium. In addition, studies have yet to be conducted comparing the typical characteristics of brazing filler metals with special structures, and the joint characteristics of brazing filler metals with available frames. In this study, the characteristics of junctions of silver-based intercalation metals were compared based on the type of filler metal additives, using a special structure, a filler metal sandwich structure, to protect the internal base metal. The general filler metal was compared using the structure, and the thickness of the filler metal according to the thickness was reached. A comparison of the characteristics of the junction was conducted to identify the characteristics of an intersection of silver-based brazing filler metal and the effect on joint strength. Each filler metal's collective tensile strength was measured, and the relationship between joint characteristics and tensile joint strength was explored. The junction was estimated through micro strength measurement, contact angle measurement with the base metal when the filler metal was melted, XRD image observation, composition analysis for each phase through SEM-EDS, and microstructure phase acquisition.

Study on the Improvement of Brazeability for Copper-Aluminum Dissimilar Materials Joint (구리-알루미늄 이종재료의 브레이징 특성 향상에 관한 연구)

  • 정호신;배동수;고성우
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.49-57
    • /
    • 2001
  • One of the most important considerations to braze Cu-Al dissimilar materials is control of brittle metallic compound which makes it difficult to obtain a sound brazed joint. Nowdays, several attempts were made to control the metallic compound. But effective method for controlling metallic compound was not established. In this point of view, commercially pure aluminum and copper were used as base metal and Al-Si-X and Zn-Al-X alloy systems were developed as filler metal. Brazing was carried out to find optimum conditions for Cu-Al dissimilar joint. The results obtained in this study were summarized as follows: 1) The joint brazed by Al-Si-X filler metal showed good brazeability and mechanical properties. The tensile strength of the joint brazed over solidus temperature was more than 90% of Al base metal. Especially, the joint brazed at liquidus temperature was fractured in the Al base metal. 2) Fluorides fluxes(a mixture of potassium fluoro-aluminates) were used to improve surface cleanliness of base metal and wettability of Al-Si-X filler metal. It was melted at the temperature about 1$0^{\circ}C$ lower than that of the filler metal, and made appropriate brazing environment. Therefore, it could be a proper selection as flux.

  • PDF

Thermal Characteristic of the Tubular Single tap Adhesively Bonded Joint bonded with filler containing epoxy adhesive (충전재가 함유된 단일겹치기 접착 조인트의 열적 특성에 관한 연구)

  • Kim, Jin-Kook;Lee, Dai-Gil
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.370-376
    • /
    • 2001
  • When an adhesive joint is exposed to high environmental temperature, the tensile load capability of the adhesive joint decreases because the elastic modulus and failure strength of structural adhesive decrease. The thermo-mechanical properties of structural adhesive can be improved by addition of fillers to the adhesive. In this paper, the elastic modulus and failure strength of adhesives as well as the tensile load capability of tubular single lap adhesive joints were experimentally and theoretically investigated with respect to the volume fraction of filler (alumina) and the environmental temperature. Also the tensile modulus of the fille containing epoxy adhesive was predicted using a new equation which considers filler shape, filler content and environmental temperature. The tensile load capability of the adhesive joint was predicted by using the effective strain obtained from the finite element analysis and a new failure model, from which the relation between the bonding length and the crack length was developed with respect to the volume fraction of filler.

  • PDF

A Study on the Brazing Bondinf Conditions of A1050 Using Al-Si Alloy Filler Metal (Al-Si계 필러메탈을 이용한 A1050알루미늄의 브레이징 접합조건에 관한 연구)

  • 김정일;김영식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.66-72
    • /
    • 1993
  • The brazing of Al to Al using Al-Si alloy filler metal was performed under different bonding conditions such as ratio of lap length to plate thickness, surface roughness and joint clearance of the lap joint. The adopted thickness of the base metal in this experiments were two kinds of 4mm and 7mm which were most commonly used in various field. Influence of several bonding conditions of Al/Al joint was quantitavely evaluated by bonding strength test, and microstructural analysis at the interlayer were performed by optical microscope. From above experiments, the optimum bonding conditions of the brazing bonding of Al/Al using Al-Si alloy filler metal was determined. The major results obtained are as follows. 1) The fracture occurs at brazed joint in the conditions of that the ratio of lap length to plate thickness is less than 2 in case of 7mm plate thickness. 2) The ratio of lap length to plate thickness which the fracture occurs at base metal is decreased with the decreasing of the plate thickness. 3) The joint strength is not affected by the surface roughness and joint clearance of the brazed part. 4) The heat-treatment of the brazed joint contribute to eliminate the boundary between the base metal and filler metal. However, the joint strength is not affected by the heat-treatment.

  • PDF

DEVELOPMENT OF TITANIUM-BASED BRAZING FILLER METALS WITH LOW-MELTING-POING

  • Onzawa, Tadao;Tiyama, Takashi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.539-544
    • /
    • 2002
  • Titanium and titanium alloy are excellent in corrosion resistance and specific intensity, and also in the biocompatibility. On the other hand, the brazing is bonding method of which productivity and reliability are high, when the complicated and precise structure of the thin plate is constructed. However, though conventional titanium-based brazing filler metal was excellent in bond strength and corrosion resistance, it was disadvantageous that metal structure and mechanical property of the base metal deteriorated, since the brazing temperature (about 1000 C) is considerably high. Authors developed new brazing filler metal which added Zr to Ti-Cu (-Ni) alloy which can be brazed at 900 C or less about 15 years ago. In this paper, the development of more low-melting-point brazing filler metal was tried by the addition of the fourth elements such as Ni, Co, Cr for the Ti-Zr-Cu alloy. As a method for finding the low-melting-point composition, eutectic composition exploration method was used in order to reduce the experiment point. As the result, several kinds of new brazing filler metal such as 37.5Ti-37.5-Zr-25Cu alloy (melting point 825 C) and 30Ti-43Zr-25Cu-2Cr alloy (melting point: 825 C) was developed. Then, the brazing joint showed the characteristics which were almost equal to the base metal from the result of obtaining metallic structure and strength of joint of brazing joint. However, the brazing filler metal composition of the melting point of 820 C or less could not be found. Consequentially, it was clarified that the brazing filler metal developed in this study could be practically sufficiently used from results such as metal structure of brazing joint and tensile test of the joint.

  • PDF

Development of Titanium-based Brazing Filler Metals with Low-melting-point

  • Onzawa, T.;Iiyama, T.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.14-18
    • /
    • 2002
  • Titanium and titanium alloy are excellent in corrosion resistance and specific intensity, and also in the biocompatibility. On the other hand, the brazing is bonding method of which productivity and reliability are high, when the complicated and precise structure of the thin plate is constructed. However, though conventional titanium-based brazing filler metal was excellent in bond strength and corrosion resistance, it was disadvantageous that metal structure and mechanical property of the base metal deteriorated, since the brazing temperature ( about $1000^{\circ}C$ ) is considerably high. Authors developed new brazing filler metal which added Zr to Ti-Cu (-Ni) alloy which can be brazed at $900^{\circ}C$ or less about 15 years ago. In this paper, the development of more low-melting-point brazing filler metal was tried by the addition of the fourth elements such as Ni, Co, Cr for the Ti-Zr-Cu alloy. As a method for finding the low-melting-point composition, eutectic composition exploration method was used in order to reduce the experiment point. As the result, several kinds of new brazing filler metal such as 37.5Ti-37.5-Zr-25Cu alloy (melting point: $825^{\circ}C$) and 30Ti-43Zr-25Cu-2Cr alloy (melting point: $825^{\circ}C$) was developed. Then, the brazing joint showed the characteristics which were almost equal to the base metal from the result of obtaining metallic structure and strength of joint of brazing joint. However, the brazing filler metal composition of the melting point of $820^{\circ}C$ or less could not be found. Consequentially, it was clarified that the brazing filler metal developed in this study could be practically sufficiently used from results such as metal structure of brazing joint and tensile test of the joint.

  • PDF

Development of Intelligent Filler Wire Feeding Device for Improvement of Weld quality (용접부 품질향상을 위한 지능형 용접 와이어 공급 장치 개발)

  • Lee Jae-Seok;Sohn Young-Il;Park Ki-Young;Lee Kyoung-Don
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.59-66
    • /
    • 2006
  • In laser welding, automatic seam tracking is important to adjust the laser head position in real time as it moves along the seam. Also if the joint gap is occurred, filling the missing material into the joint gap is necessary to prevent welding defects and bad welding quality. In general, the joint gap width is not constant along the seam due to a variety of reason. So it is essential to control the filler wire speed into the joint gap to acquire good welding quality. This paper describes an intelligent filler wire feeding device which can control 3-dimensional seam tracking and the filler wire speed by measuring the gap position and the joint gap width in laser welding. We call this device as Smart Micro Control system(SMC). To achieve this objective, we assessed weld quality in 2mm sheets of A16061 which had various gap width by using the developed device. From the experimental results, It was found the possibility that the developed device could be used in welding various 3-dimensional structures.

A Study of Dissimilar Weldability of Incoloy 825 with Mild Steel (Incoloy 825합금 및 탄소강의 이종강종간 용접특성 연구)

  • Kim, Hui-Bong;Lee, Chang-Hui
    • Korean Journal of Materials Research
    • /
    • v.7 no.2
    • /
    • pp.162-170
    • /
    • 1997
  • This study has evaluated the dissimialr weldability of Incoloy 825 Ni base alloy with a mild steel(SS41). Further a compatibility study of wrveral Ni base filler metals with the dissimilar joint between the two alloys was also included. The dissimilar weldability of Incoloy 825 with mild steel is strongly dependent upon the type of the filler metal used. Among the filler metals, ENiCrFe which has a chemical comosition similar to that of Incoloy 825 was found to be most compatible to the joint. In addition, a filler metal which showed a good cracing resistance in one dissimiar alloy combination was not necessarily graranteed to other combination. Microstructural examination with SEM, TEM and Auger revealed that the solidification cracking resestance of the dissimilar joint. between Incoloy 835 and SS41 was closely with the Ti+Nb content and with the content of a low melting eutectic phase of Laves relatibve to that of MC type phase.

  • PDF

A Study on the Fatigue Strength and Allowable Stress of INVAR(Fe-36% Ni) Steel Lap Joint Applied to Cargo Containment of LNG Carrier (LNG선용 INVAR(Fe-36%Ni)강 Lap 이음부의 피로강도와 허용응력에 관한 연구)

  • 한명수;한종만;한용섭
    • Journal of Welding and Joining
    • /
    • v.12 no.1
    • /
    • pp.102-115
    • /
    • 1994
  • This paper is to evaluate the fatigue strength of lap joints of materials applied to LNG carrier cargo containment of GAZ-TRANSPORT(GT) type, which was welded by manual and automatic TIG welding process. The thicknesses of lapped members were 1.5mm/1.5mm or 1.5mm/0.7mm in Invar to Invar joint, and 1.5mm/8.0mm in Invar to stainless steel joint, respectively. These lap joints were mainly applied to the membrance fabrication of GT-LNG carrier. Fatigue tests of Invar/Inar lap joints were conducted under the stress ratio R=0 at room temperature. The effect of mean stress and cumulative fatigue damage on the allowable stress of Invar lap joint was evaluated on the basis of test results. Fatigue test was also conducted on Inver/Stainless steel lap joints welded by automatic TIG process without filler metals. The fatigue test of the joint was carried out under the same conditions as those of Invar/invar lap joints. The fatigue strength of the joint welded without filler metal was comparable to those welded with filler metal quoted from reference. The fatigue strength of Invar/stainless steel lap joint was only dependent on the lap throat thickness, and not on the welding process. Based on test results, the applicability of TIG welding process without filler metal in Invar/stainless steel lap joint was reviewed by controlling welding variables to assure the valid throat thickness of lap joints.

  • PDF