• 제목/요약/키워드: joint deformation

검색결과 546건 처리시간 0.029초

Shear strength analyses of internal diaphragm connections to CFT columns

  • Kang, Liping;Leon, Roberto T.;Lu, Xilin
    • Steel and Composite Structures
    • /
    • 제18권5호
    • /
    • pp.1083-1101
    • /
    • 2015
  • Previous theoretical equations for the shear capacity of steel beam to concrete filled steel tube (CFT) column connections vary in the assumptions for the shear deformation mechanisms and adopt different equations for calculating shear strength of each component (steel tube webs, steel tube flanges, diaphragms, and concrete etc.); thus result in different equations for calculating shear strength of the joint. Besides, shear force-deformation relations of the joint, needed for estimating building drift, are not well developed at the present. This paper compares previously proposed equations for joint shear capacity, discusses the shear deformation mechanism of the joint, and suggests recommendations for obtaining more accurate predictions. Finite element analyses of internal diaphragm connections to CFT columns were carried out in ABAQUS. ABAQUS results and theoretical estimations of the shear capacities were then used to calibrate rotational springs in joint elements in OpenSEES simulating the shear deformation behavior of the joint. The ABAQUS and OpenSEES results were validated with experimental results available. Results show that: (1) shear deformation of the steel tube dominates the deformation of the joint; while the thickness of the diaphragms has a negligible effect; (2) in OpenSEES simulation, the joint behavior is highly dependent on the yielding strength given to the rotational spring; and (3) axial force ratio has a significant effect on the joint deformation of the specimen analyzed. Finally, modified joint shear force-deformation relations are proposed based on previous theory.

다목적 바닥 레벨조인트의 변형 능력 평가 (Evaluation on the Deformation Capacity of Multipurpose Floor Level Joint System)

  • 서수연;최윤철;강인석;이리형
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권1호
    • /
    • pp.197-204
    • /
    • 2005
  • 다목적 바닥 레벨조인트는 레일의 레벨링과 조립이 용이하고 조인트에서 변형 흡수가 가능한 공법으로 최근 국내에서 개발되었다. 앞서 수행된 연구결과를 통하여 본 공법의 구성부재인 지지대, 레일, 그리고 레일+지지대의 구조적 특성은 만족스런 결과를 얻을 수 있었다. 따라서 본 연구에서는 콘크리트를 타설한 바닥 레벨조인트의 변형흡수 능력을 평가하기 위해 인장 또는 압축변형을 유발시킨 실험적 연구를 실시하였다. 또한 다목적 바닥 레벨 조인트를 설치한 대상구조물을 선정하여 해석적 연구를 수행함으로서 다목적 바닥 레벨 조인트의 변형성능을 정량적으로 파악하였다. 실험과 해석연구를 통하여 다목적 바닥 레벨조인트는 요구되는 변형수요에 비하여 충분한 변형흡수 능력을 확보하고 있는 것으로 나타나났다.

수직 및 전단하중하에서 화강암 인공절리의 변형특성 (Deformation Characteristics of Artificially Fracture Joins of Granite under Normal and Shear Loading)

  • 김영근;이희근
    • 터널과지하공간
    • /
    • 제3권2호
    • /
    • pp.142-151
    • /
    • 1993
  • In this study, the deformation characteristics of atrtificially fractured joints of granite under normal and shear loading were investigated. To obtain the characteristics of joint deformation, compression and shear tests were performed in the laboratory on three different sizes of rock specimens. The rock used in the experimens was Iksan granite. Joints were produced artificially by fracturing using the apparatus for generating extension-joint. Joint normal deformability was studied by conducting cyclic loading tests on the joints. Joint closure varied non-linearly with normal stress through cyclic loadings. As normal stress increased, the joints gradually reached a state of maximum joint closure. The relation between normal stress and joint closure for mated and unmated joints was well described by the hyperbolic and exponential function, respectively. Joint shear deformability was studied by performing direct shear tests under normal stresses on the joints. it was shown that the behaviour in the prepeak range was non-linear and joint shear stiffness depended on the size of specimen and the normal stress.

  • PDF

Modelling of shear deformation and bond slip in reinforced concrete joints

  • Biddah, Ashraf;Ghobarah, A.
    • Structural Engineering and Mechanics
    • /
    • 제7권4호
    • /
    • pp.413-432
    • /
    • 1999
  • A macro-element model is developed to account for shear deformation and bond slip of reinforcement bars in the beam-column joint region of reinforced concrete structures. The joint region is idealized by two springs in series, one representing shear deformation and the other representing bond slip. The softened truss model theory is adopted to establish the shear force-shear deformation relationship and to determine the shear capacity of the joint. A detailed model for the bond slip of the reinforcing bars at the beam-column interface is presented. The proposed macro-element model of the joint is validated using available experimental data on beam-column connections representing exterior joints in ductile and nonductile frames.

절리의 기하학적 속성이 절리성 암반의 이방적 변형 특성에 미치는 영향 (Effect of Joint Geometry on Anisotropic Deformability of Jointed Rock Masses)

  • 류성진;엄정기
    • 자원환경지질
    • /
    • 제53권3호
    • /
    • pp.271-285
    • /
    • 2020
  • 본 연구는 절리의 기하학적 속성이 절리성 암반의 변형 특성에 미치는 영향을 평가하기 위하여 삼차원 불연속절리망(DFN; discrete fracture network) 시스템에 대한 개별요소법 기반의 응력-변형 해석과 관련된 수치실험을 수행하였다. 1~2 개의 확정적 방향성을 갖는 절리군을 사용하여 절리의 빈도와 길이분포를 달리하며 추계론적으로 생성한 총 12개의 1000㎥ 정육면체 DFN 블록에 대하여 삼차원 직교좌표계의 축 방향에 따른 변형계수가 산정되었다. 또한, 일부 DFN 블록은 삼차원상에서 매 30° 간격의 선주향 및 선경사 방향을 축차응력 방향으로 설정하고 변형계수를 산정하였다. 절리의 길이가 증가할수록 DFN 블록의 변형계수는 더욱 저감되는 것으로 평가되었다. 절리의 빈도 증가는 절리의 길이가 짧아서 상대적으로 암교 효과가 큰 경우 DFN 블록의 변형계수 저감에 유의미한 영향을 미치지 못 할 가능성도 있지만 절리길이가 길수록 절리빈도의 증가가 DFN의 이방적 변형계수에 지대한 영향을 미치는 것으로 평가되었다. 절리의 길이와 빈도 변화에 따른 이방적 변형계수의 변화는 DFN에 분포하는 절리군의 개수 및 방향성에 크게 좌우된다. DFN 블록의 변형 특성은 삼차원상의 방향에 따라 다르게 발현되는 것으로 평가되었다. 마지막으로 본 연구는 절리의 기하학적 속성이 고려된 응력-변형 해석을 위한 수치해석 절차를 제시하였으며 현장규모의 실무 적용을 위한 방법론에 대하여 토의하였다.

머시닝센터 회전 결합부의 정강성 Tuning 기법 (Static Stiffness Tuning Method of Rotational Joint of Machining Center)

  • 김양진;이찬홍
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.797-803
    • /
    • 2010
  • A method has been developed to tune the static stiffness at a rotation joint considering the whole machine tool system by interactive use of finite element method and experiment. This paper describes the procedure of this method and shows the results. The method uses the static experiment on measurement model which is set-up so that the effects of uncertain factors can be excluded. For FEM simulation, the rotation joint model is simplified using only spindle, bearing and spring. At the rotation joint, the damping coefficient is ignored, The spindle and bearing is connected by only spring. By static experiment, 500 N is forced to the front and behind portion of spindle and the deformation is measured by capacitive sensor. The deformation by FEM simulation is extracted with changing the static stiffness from the initial static stiffness considering only rotation joint. The tuning static stiffness is obtained by exploring the static stiffness directly trusting the deformation from the static experiment. Finally, the general tuning method of the static stiffness of machine tool joint is proposed using the force stream and the modal analysis of machine tool.

Investigation of mechanical behaviour of non-persistent jointed blocks under uniaxial compression

  • Asadizadeh, Mostafa;Moosavi, Mahdi;Hossaini, Mohammad Farouq
    • Geomechanics and Engineering
    • /
    • 제14권1호
    • /
    • pp.29-42
    • /
    • 2018
  • This paper presents the results of an empirical study in which square rock-like blocks containing two parallel pre-existing rough non-persistent joints were subjected to uniaxial compression load. The main purpose of this study was to investigate uniaxial compressive strength and deformation modulus of jointed specimens. Response Surface Method (RSM) was utilized to design experiments and investigate the effect of four joint parameters, namely joint roughness coefficient (JRC), bridge length (L), bridge angle (${\gamma}$), and joint inclination (${\theta}$). The interaction of these parameters on the uniaxial compressive strength (UCS) and deformation modulus of the blocks was investigated as well. The results indicated that an increase in joint roughness coefficient, bridge length and bridge angle increased compressive strength and deformation modulus. Moreover, increasing joint inclination decreased the two mechanical properties. The concept of 'interlocking cracks' which are mixed mode (shear-tensile cracks) was introduced. This type of cracks can happen in higher level of JRC. Initiation and propagation of this type of cracks reduces mechanical properties of sample before reaching its peak strength. The results of the Response Surface Methodology showed that the mutual interaction of the joint parameters had a significant influence on the compressive strength and deformation modulus.

Seismic detailing of reinforced concrete beam-column connections

  • Kim, Jang Hoon;Mander, John B.
    • Structural Engineering and Mechanics
    • /
    • 제10권6호
    • /
    • pp.589-601
    • /
    • 2000
  • A simplified analysis procedure utilizing the strut-tie modeling technique is developed to take a close look into the post-elastic deformation capacity of beam-column connections in ductile reinforced concrete frame structures. Particular emphasis is given to the effect of concrete strength decay and quantity and arrangement of joint shear steel. For this a fan-shaped crack pattern is postulated through the joints. A series of hypothetical rigid nodes are assumed through which struts, ties and boundaries are connected to each other. The equilibrium consideration enables all forces in struts, ties and boundaries to be related through the nodes. The boundary condition surrounding the joints is obtained by the mechanism analysis of the frame structures. In order to avoid a complexity from the indeterminacy of the truss model, it is assumed that all shear steel yielded. It is noted from the previous research that the capacity of struts is limited by the principal tensile strain of the joint panel for which the strain of the transverse diagonal is taken. The post-yield deformation of joint steel is taken to be the only source of the joint shear deformation beyond the elastic range. Both deformations are related by the energy consideration. The analysis is then performed by iteration for a given shear strain. The analysis results indicate that concentrating most of the joint steel near the center of the joint along with higher strength concrete may enhance the post-elastic joint performance.

Large deformation modeling of flexible manipulators to determine allowable load

  • Esfandiar, Habib;Korayem, Moharam H.;Haghpanahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.619-629
    • /
    • 2017
  • This paper focuses on the study of complete dynamic modeling and maximum dynamic load carrying capacity computation of N-flexible links and N-flexible joints mobile manipulator undergoing large deformation. Nonlinear dynamic analysis relies on the Timoshenko theory of beams. In order to model the system completely and precisely, structural and joint flexibility, nonlinear strain-displacement relationship, payload, and non-holonomic constraints will be considered to. A finite element solution method based on mixed method is applied to model the shear deformation. This procedure is considerably more involved than displacement based element and shear deformation can be readily included without inducing the shear locking in the element. Another goal of this paper is to present a computational procedure for determination of the maximum dynamic load of geometrically nonlinear manipulators with structural and joint flexibility. An effective measure named as Moment-Height Stability (MHS) measure is applied to consider the dynamic stability of a wheeled mobile manipulator. Simulations are performed for mobile base manipulator with two flexible links and joints. The results represent that dynamic stability constraint is sensitive when calculating the maximum carrying load. Furthermore, by changing the trajectory of end effector, allowable load also changes. The effect of torsional spring parameter on the joint deformation is investigated in a parametric sensitivity study. The findings show that, by the increase of torsional stiffness, the behavior of system approaches to a system with rigid joints and allowable load of robot is also enhanced. A comparison is also made between the results obtained from small and large deformation models. Fluctuation range in obtained figures for angular displacement of links and end effector path is bigger for large deformation model. Experimental results are also provided to validate the theoretical model and these have good agreement with the simulated results.

Computer Simulation of Deformation in a Rubber Boots for Translation and Rotation of CV-joint for Automobile

  • Lee, Min-A;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • 제55권2호
    • /
    • pp.88-94
    • /
    • 2020
  • Automobile industry, along with the automobile steering system, is rapidly changing and developing. The constant velocity joint transmits power to the wheels of vehicles without changing their angular velocity based on the movement of the steering wheel. Moreover, it controls their movement to act as a buffer. In order to prevent the excessive increase in temperature caused by the movement of vehicles, boots are attached to the constant velocity joint and lubricant is injected into the boots. The boots maintain the lubrication and protect the constant velocity joint from sand, water, and so on. As the wheels of the vehicle rotate, the boots are acted upon by forces such as bending, compression, and tension. Additionally, self-contact occurs to boots. Therefore, their durability deteriorates over time. To prevent this problem, polychloroprene rubber was initially used however, it was replaced by thermoplastic polyester elastomers due to their excellent fatigue durability. In this study, the structural analysis of boots was conducted. The results showed the deformation patterns of the boots based on the translation and rotation of the constant velocity joint. Moreover, it confirmed the location that was vulnerable to deformation. This study can be used to potentially design high-quality constant velocity joint boots.