• Title/Summary/Keyword: joint core

Search Result 331, Processing Time 0.022 seconds

Numerical study of steel sandwich plates with RPF and VR cores materials under free air blast loads

  • Rashad, Mohamed;Yang, T.Y.
    • Steel and Composite Structures
    • /
    • v.27 no.6
    • /
    • pp.717-725
    • /
    • 2018
  • One of the most important design criteria in military tunnels and armoured doors is to resist the blast loads with minimum structural weight. This can be achieved by using steel sandwich panels. In this paper, the nonlinear behaviour of steel sandwich panels, with different core materials: (1) Hollow (no core material); (2) Rigid Polyurethane Foam (RPF); and (3) Vulcanized Rubber (VR) under free air blast loads, was investigated using detailed 3D nonlinear finite element models in Ansys Autodyn. The accuracy of the finite element model proposed was verified using available experimental test data of a similar steel sandwich panel tested. The results show the developed finite element model can be reliably used to simulate the nonlinear behaviour of the steel sandwich panels under free air blast loads. The verified finite element model was used to examine the different parameters of the steel sandwich panel with different core materials. The result shows that the sandwich panel with RPF core material is more efficient than the VR sandwich panel followed by the Hollow sandwich panels. The average maximum displacement of RPF sandwich panel under different ranges of TNT charge (1 kg to 10 kg at a standoff distance of 1 m) is 49% and 53% less than the VR and Hollow sandwich panels, respectively. Detailed empirical design equations were provided to quantify the maximum deformation of the steel sandwich panels with different core materials and core thickness under a different range of blast loads. The developed equations can be used as a guide for engineer to design steel sandwich panels with RPF and VR core material under a different range of free air blast loads.

The Effectiveness of the External Support on the Strength and Muscle Activity of Hip Abductor in Subject Without Core Stability (심부 안정성이 부족한 대상자에게 외부적 지지가 엉덩관절 벌림근의 근력과 근활성도에 미치는 영향)

  • Jeon, In-Cheol
    • Physical Therapy Korea
    • /
    • v.29 no.1
    • /
    • pp.64-69
    • /
    • 2022
  • Background: Gluteus medius muscle is important for the stability of hip joint. The sufficient core stability can be contributed to the performance of gluteus medius muscle in standing position. In addition, the external support may affect core stability in standing position. Objects: The purpose of this study was to investigated the effectiveness of the external support on the strength and muscle activity of hip abductor muscle during hip abduction in standing position in subjects without core stability. Methods: Fifteen subjects participated in this study. The subjects were evaluated by using the double-leg lowering with bent knees to measure the core stability. The strength and muscle activity of hip abductors was measured in standing position with the condition with and without external support using the tensiometer sensor and the surface electromyography. The paired t-test was used to investigate the difference between hip abductor strength and activity according to external support. The level of statistical significance was set at α = 0.05. Results: The hip abductor strength and muscle activity of gluteus medius muscle with external support were significantly greater than those without external support during hip abduction in standing position (p < 0.05). Conclusion: During hip abduction in standing position, the external support may be contributed to the improvement of the hip abductor strength and muscle activity of gluteus medius especially in the subjects without core stability.

Analysis of Influencing Factors of Cyber Weapon System Core Technology Realization Period (사이버 무기체계 핵심기술 실현시기의 영향 요인 분석)

  • Lee, Ho-gyun;Lim, Jong-in;Lee, Kyung-ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.2
    • /
    • pp.281-292
    • /
    • 2017
  • It is demanded to promote research and development of cyber weapons system and core technology in response to the ongoing cyber attack of North Korea. In this paper, core technologies of the future cyber weapon system are developed and the factors affecting the realization timing of core technologies were analyzed. 9 core technology groups and 36 core technologies are derived. Afterwards, these core technology groups are compared to the operation phase of the joint cyber warfare guideline and the cyber kill chain of Lockheed Martin. As a result of the comparison, it is confirmed that the core technology groups cover all phases of the aforementioned tactics. The results of regression analyses performed on the degree of influence by each factor regarding the moment of core technology realization show that the moment of core technology realization approaches more quickly as factors such as technology level of the most advanced country, technology level of South Korea, technology transfer possibility from the military sector to the non-military sector(spin-off factor), and technology transfer possibility from the non-military sector to the military sector(spin-on factor) increase. On the contrary, the moment of core technology realization is delayed as the degree at which the advanced countries keep their core technologies from transferring decrease. The results also confirm that the moment of core technology realization is not significantly correlated to the economic ripple effect factor. This study is meaningful in that it extract core technologies of cyber weapon system in accordance with revision of force development directive and join cyber warfare guideline, which incorporated cyber weapon system into formal weapon system. Furthermore, the study is significant because it indicates the influential factor of the moment of core technology realization.

Effect of loading velocity on the seismic behavior of RC joints

  • Wang, Licheng;Fan, Guoxi;Song, Yupu
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.665-679
    • /
    • 2015
  • The strain rate of reinforced concrete (RC) structures stimulated by earthquake action has been generally recognized as in the range from $10^{-4}/s$ to $10^{-1}/s$. Because both concrete and steel reinforcement are rate-sensitive materials, the RC beam-column joints are bound to behave differently under different strain rates. This paper describes an investigation of seismic behavior of RC beam-column joints which are subjected to large cyclic displacements on the beam ends with three loading velocities, i.e., 0.4 mm/s, 4 mm/s and 40 mm/s respectively. The levels of strain rate on the joint core region are correspondingly estimated to be $10^{-5}/s$, $10^{-4}/s$, and $10^{-2}/s$. It is aimed to better understand the effect of strain rates on seismic behavior of beam-column joints, such as the carrying capacity and failure modes as well as the energy dissipation. From the experiments, it is observed that with the increase of loading velocity or strain rate, damage in the joint core region decreases but damage in the plastic hinge regions of adjacent beams increases. The energy absorbed in the hysteresis loops under higher loading velocity is larger than that under quasi-static loading. It is also found that the yielding load of the joint is almost independent of the loading velocity, and there is a marginal increase of the ultimate carrying capacity when the loading velocity is increased for the ranges studied in this work. However, under higher loading velocity the residual carrying capacity after peak load drops more rapidly. Additionally, the axial compression ratio has little effect on the shear carrying capacity of the beam-column joints, but with the increase of loading velocity, the crack width of concrete in the joint zone becomes narrower. The shear carrying capacity of the joint at higher loading velocity is higher than that calculated with the quasi-static method proposed by the design code. When the dynamic strengths of materials, i.e., concrete and reinforcement, are directly substituted into the design model of current code, it tends to be insufficiently safe.

A study on characteristics of composition method of inner foundation in stone stupa (석탑 기단부 적심구성방법에 대한 특성 고찰 - $7{\sim}8$세기 석탑 중 해체 수리한 석탑을 중심으로 -)

  • Chung, Hae-Doo;Jang, Suk-Ha
    • Journal of architectural history
    • /
    • v.16 no.5
    • /
    • pp.55-66
    • /
    • 2007
  • Through analysing on construction cases of stupa built in A.D. 7,8th, I have researched about these : constructive methods of inner soil of stupa, spatial compositions, characteristics of structures, arrangements of inner soil and etc. And cases analysed are six ; Mireuksajiseoktap(stone pagoda of Mireuksa Temple site), Gameunsajisamcheumgseoktap(three storied stone pagoda of Gameunsa Temple site), Goseonsajisamcheungseoktap(three storied stone pagoda of Goseonsa Temple site), Wolseong nawolliocheungseoktap(five storied stone pagoda in Nawonri, Wolseong), Guksagokseoktap(three storied stone pagoda in Guksa valley), Giamgokseoktap(three storied stone pagoda in Giam valley). Additionally we researched about inner soil of Sacheonwangsaji tapji(basement of stone stupa site in Sacheonwang Temple site) to speculate on composition of Synthetically, the foundation could be divided as core space and outer space. ; the former as structural function and the latter as ornamental function. And the core area could be divided again as center column space and buffer space. The relationship between core spaces and its formation are as belows; First, according to the area of foundation and scale of stone pagoda, formations of core are differed. As the scale of stone pagoda goes bigger, and the area of foundation goes larger, the structure of stone pagoda comprised by center column type and layered-core which endure upper load independently. On the contrary, as the scale of stone pagoda goes smaller, and the area of foundation goes lesser, the structure of stone pagoda tend to use only center column to endure upper part. Second, spatial composition of core area is comprised as two spaces, one which endure upper load and buffer space which absorb side pressure and upper pressure. The buffer space tend to be used in case of those structures which could not endure side pressure or have lots of joint. In some cases, it was located below the cover stone of foundation and gained upper load. And in case that have not gained pressure from side stone, the buffer space are comprised by smalle stone or roof tile to get structural supplement.

  • PDF

Knee-wearable Robot System Using EMG signals (근전도 신호를 이용한 무릎 착용 로봇시스템)

  • Cha, Kyung-Ho;Kang, Soo-Jung;Choi, Young-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.286-292
    • /
    • 2009
  • This paper proposes a knee-wearable robot system for assisting the muscle power of human knee by processing EMG (Electromyogram) signals. Although there are many muscles affecting the knee joint motion, the rectus femoris and biceps femoris among them play a core role in the extension and flexion motion, respectively, of the knee joint. The proposed knee-wearable robot system consists of three parts; the sensor for measuring and processing EMG signals, controller for estimating and applying the required knee torque, and actuator for driving the knee-wearable mechanism. Ultimately, we suggest the motion control method for knee-wearable robot system by processing the EMG signals of corresponding two muscles in this paper. Also, we show the effectiveness of the proposed knee-wearable robot system through the experimental results.

Joint technology between Manganese crossing and rail by Flash Butt Welding (망간크로싱과 레일의 플래시버트 용접 기술 개발)

  • Kwon Ho Jin;Kim Soon Chul;Choi In Suk;Lee Bo Young
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.163-169
    • /
    • 2003
  • In order to develop domestic railway technology, it is necessary that manufacturing technology of turnout should be kept up with update level, because turnout is the core component of high speed railway. Manganese crossing made of high manganese alloy steel is a important component of turnout. So far, this could not have been welded with rail steel due to metallic problem in Korea. However, joint technology hereunder between manganese crossing and rail by using Flash Butt Welding which is developed by Kangwon Railtech Co., Ltd is the state of the art and enable to realize rail continuousness in turnout section, speed up train velocity, reduce maintenance cost, and enhance riding quality.

  • PDF

A Study on Start·Stop System at Water Turbine-Generator for Tidal Power Plant (조력발전용 수차발전기의 기동·정지시스템에 관한 연구)

  • Oh, Min-Hwan;Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.2
    • /
    • pp.113-118
    • /
    • 2014
  • Tidal power is one of new and renewable energy sources. Tidal power is generated by using the gap in the water level between the water outside and inside the embankment. All tidal power plant in Korea were being operated by import of turn-key from abroad. The know-how and technology which are the most important to build predictive control system has become increasingly difficult to obtain from advanced countries because most of them avoid to transfer, which the domestic development of the control system is needed. In this paper, a study on start stop system at water turbine-generator for tidal power plant at the beginning of development was presented. For improvement the efficiency and develope of core technology of the start stop system, the technique and characteristics of tidal power, modeling, maximum generation calculation method, and optimal control of joint control system in Sihwa tidal power plant were studied.

Efficient Transform Coefficient Coding for the HEVC Intra Frame Coder (HEVC 화면내 부호기를 위한 효율적인 변환 계수 부호화 방법)

  • Choi, Jung A;Ho, Yo Sung
    • Smart Media Journal
    • /
    • v.1 no.2
    • /
    • pp.6-11
    • /
    • 2012
  • In the HEVC standard, transform coefficient coding that affects the output bitstream directly is a core part of the encoder and it includes coefficient scanning and entropy coding. Recently, JCT-VC(Joint Collaborative Team on Video Coding) advances to HEVC Committee Draft (CD). In this paper, we explain HEVC transform coefficient coding and propose an efficient transform coefficient coding method considering statistics of transform coefficients in the intra frame coder. The proposed method reduces BD-Rate by up to 0.74%, compared to the conventional HEVC transform coefficient coding.

  • PDF

A Study on Development of Dissimilar Welding Optimization Technique for Auto-Lifting Magnet (자동 리프팅 마그넷 유도코아자력절연부의 이종재 아크용접의 최적화)

  • Oh Sae-Kyoo;Kim, Il-Seok;Kwon, Sang-Woo;Lee, Hack-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.83-89
    • /
    • 1999
  • In this paper an experimental study on the development of the shielded metal are welding(SMAW) optimization technique for the dissimilar materials SS41 and STS304 of Auto-Lifting Magnet core plate was carried out. It was confirmed that the optimum welding heat input range was 37.5 to 45 kj/cm by considering on the strength and fatigue life of the welded joints more than 100% joint efficiency. And the quantitative relationship empirical wquation between the strength toughness adn fatigue life and the weld heat input was obtained.

  • PDF