• Title/Summary/Keyword: joint connection

Search Result 565, Processing Time 0.022 seconds

Semi-Rigid connections in steel structures: State-of-the-Art report on modelling, analysis and design

  • Celik, Huseyin Kursat;Sakar, Gokhan
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.1-21
    • /
    • 2022
  • In the structural analysis of steel frames, joints are generally considered as rigid or hinged considering their moment transfer ability. However, the first studies conducted with the beginning of the 20th century showed that the joints do not actually fit these two definitions. In reality, a joint behaves between these two extreme points and is called semi-rigid. Including the actual state of the joint in the structural analysis provides significant economic advantages, so the subject is an intense field of study today. However, it does not find enough application area in practice. For this reason, a large-scale literature published from the first studies on the subject to the present has been examined within the scope of the study. Three important points have been identified in order to examine a joint realistically; modelling the load-displacement relationship, performing the structural analysis and how to design. Joint modelling methods were grouped under 7 main headings as analytical, empirical, mechanical, numerical, informational, hybrid and experimental. In addition to the moment-rotation, other important external load effects like axial force, shear and torsion were considered. Various evaluations were made to expand the practical application area of semi-rigid connections by examining analysis methods and design approaches. Dynamic behaviour was also included in the study, and besides column-beam connections, other important connection types such as beam-beam, column-beam-cross, base connection were also examined in this paper.

Novel pin jointed moment connection for cold-formed steel trusses

  • Mathison, Chris;Roy, Krishanu;Clifton, G. Charles;Ahmadi, Amin;Masood, Rehan;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.453-467
    • /
    • 2019
  • Portal frame structures, made up of cold-formed steel trusses, are increasingly being used for lightweight building construction. A novel pin-jointed moment connector, called the Howick Rivet Connector (HRC), was developed and tested previously in T-joints and truss assemblage to determine its reliable strength, stiffness and moment resisting capacity. This paper presents an experimental study on the HRC, in moment resisting cold-formed steel trusses. The connection method is devised where intersecting truss members are confined by a gusset connected by HRCs to create a rigid moment connection. In total, three large scale experiments were conducted to determine the elastic capacity and cyclic behaviour of the gusseted truss moment connection comprising HRC connectors. Theoretical failure loads were also calculated and compared against the experimental failure loads. Results show that the HRCs work effectively at carrying high shear loads between the members of the truss, enabling rigid behaviour to be developed and giving elastic behaviour without tilting up to a defined yield point. An extended gusset connection has been proposed to maximize the moment carrying capacity in a truss knee connection using the HRCs, in which they are aligned around the perimeter of the gusset to maximize the moment capacity and to increase the stability of the truss knee joint.

Evaluation of the Joint Design in Composite Truss Bridges (복부 트러스 복합교량 접합구조의 실험적 연구)

  • Shim, Chang-Su;Park, Jae-Sik;Kim, Kwang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.325-328
    • /
    • 2006
  • Joint structures of composite truss bridges can have the same details for the connection between diagonal members and upper concrete slab as the connection between diagonal members and lower concrete slab. Adequate connection details should be decided according to design codes, constructibility, and economical evaluation. It is necessary to clarify the design check items and load transferring mechanism because combined external loads on composite truss bridges are concentrated at the joints. Joints with gusset plates and stud connectors are applied and complicated joint details may arise some problems in construction. This paper deals with experimental evaluation of the joints in composite truss bridges and proper design provisions were investigated to enhance the details. Push-out test specimens with group studs were fabricated and the effects of grouping and bent studs were studied.

  • PDF

Cyclic Loading Test for Composite Beam-Column Joints using Circular CEFT Columns (콘크리트피복 원형충전강관 기둥-강재보 접합부에 대한 반복하중실험)

  • Lee, Ho Jun;Park, Hong Gun;Choi, In Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.411-422
    • /
    • 2017
  • In this study, to investigate the seismic performance of beam-column joints using concrete-encased and -filled circular steel tube(CEFT) columns, two types of tests were performed: (1) column - flange tension test and (2) beam - column joint cyclic load test. In column - flange tension test, test parameters were concrete encasement and connection details: flange width and strengthening rebar. Five specimens were tested to investigate the load-carrying capacity and the failure mode. Test results showed that increase of flange width from 200mm to 350mm result in increase of connection strength and stiffness by 61% and 56%, respectively. Structural performances were further improved with addition of tensile rebars by 35% and 92%, respectively. In cyclic loading test, three exterior beam-column joints were prepared. Test parameters were strengthening details including additional tensile rebars, thickened steel tube, and vertical plate connection. In all joint specimens, flexural yielding of beam was occurred with limited damages in the connection regions. In particular, flexural capacity of beam-column joint was increased due to additional load transfer through tube - beam web connection. Also, connection details such as increase of tube thickness and using vertical plate connection were effective in improving the resistance of panel zone.

Connections of sleeve joint purlin system

  • Tan, S.H.;Seah, L.K.;Li, Y.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2002
  • This paper presents the findings of an investigation carried out to determine the most appropriate connections, in terms of rotational stiffness, to use for the optimum design of cold-formed Zed section sleeve joint purlin system. Experiments and parametric studies were conducted to investigate the effects of geometric variables on the behavior of the sleeve-purlin and cleat-purlin connections of the sleeve joint purlin system. The variables considered were purlin size and thickness, sleeve size, thickness, length and bolt position. The test results were used to verify the empirical expressions, developed herein, employed to determine the rotational stiffness of connections. With the predicted connection stiffness, the most suitable sleeve-purlin and cleat-purlin connections can be selected so as to produce an optimum condition for the sleeve joint purlin system.

Stress Analysis of Pipe Connection Process Using Clamping Ring (구속 링을 이용한 관 결합 공정의 응력해석)

  • Yang, Young-Soo;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.81-87
    • /
    • 2017
  • The pipe connection process using a clamping ring is used for joining small pipes in the refrigerator and air-conditioner industries instead of the brazing process, which induces inevitable thermal deformation in the pipes. However, few studies have been carried out on the process to select optimal parameters in joining pipes, and studies on the relation between the process parameters of the connection and connecting force of the joint have not been conducted. In this study, the connection process of pipes with the clamping ring was modeled using the finite element method (FEM) and analyzed to obtain the contact stress distribution between the pipes with which the connecting force of the joint was estimated. Considering the characteristics of pipe connection, the process was modeled and simulated in a two-dimensional axisymmetric solution domain. With the numerical model, the effect of ring shape on the connection was studied by adding a projection to the end of a ring or changing the length of a ring. The results of the analyses revealed that the contact stress distribution could be predicted with the suggested model. The effect of the ring shape was also presented. The effect of any combination of process parameters could be easily estimated through the related analyses.

Design of a Method for Disassembly Works on Recycle Products

  • Matsumoto, Toshiyuki;Yahata, Yuko;Shida, Keisuke
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.1
    • /
    • pp.66-71
    • /
    • 2009
  • This study proposes a new framework for designing disassembly methods. In recent years, environmental problems have become global issues. Recycling of used products or resources is recognized as a matter of significance since it may help reduce the risk of exhausting natural resources. Considering possible exhaustion of limited natural resources in the near future, reuse of products would gain more environmental significance. As yet, it relies hugely on manual disassembly, which labor cost places burden on the total recycling cost. The purpose of this study is to propose a methodology designing for manual disassembly works, and a creation method of a jig. By focusing on parts' connection and attachment relationship, parts are categorized in 5 categories (parent part, joint key part, attaching key part, child part, and independent part) according to the features that parts possess, and 3 kinds of connection relationships (parent part-joint key part connection, parent part-independent part connection and child part-child part connection) are clarified. Connection relationship and attachment relationship charts have also been created, and utilizing them, disassembly orders are settled, and a disassembly jig is devised. The proposed methodology is also applied to a real product and its work time is improved 42% form 31 to 13 seconds.

Evaluation of Compressive Chord Plastification of Circular Hollow Section X-joint Truss Connection (원형강관 X-이음 트러스접합부의 압축 주강관소성화 평가)

  • Lee, Kyungkoo;Sin, Yong Sup;Son, Eun Ji
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.5
    • /
    • pp.447-454
    • /
    • 2015
  • The researches on circular hollow section(CHS) connections have been conducted continuously because of development of material properties and complex local behavior of the connections. The purpose of this study is that the effects of material strength and chord wall slenderness on chord plastification and strength of CHS X-joint truss connection under compression on branch member were evaluated. To this end, finite element analyses were performed for various connections, using ANSYS Mechanical APDL program. Based on the analysis results, the design strength of the connections according to chord plastification limit state in KBC were examined. Finally, special considerations for CHS X-joint connection design were suggested.

A Study on Safe Permanent Joint Type Multiple Socket-Outlets Development without Soldering Crimped Connection (안전형 비납땜 틀고정 영구 접속형 멀티콘센트 개발에 관한 연구)

  • Cho, Won-Seok;Lee, Wi-Ro
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.12
    • /
    • pp.47-54
    • /
    • 2015
  • Normally, multiple socket-outlet is manufactured with soldered, welded permanent connection (termination). Because this procedure is very non-environmental and requires many labor forces, many companies skip this process. To solve this these problems, this research had to design permanent joint type multiple socket-outlet, develop safer multiple socket-outlet than is sold in markets. Progressing this research, we took 3 steps. First, we had to design device for fixing a frame suitable for multiple socket-outlet. Second, this multiple socket-outlet must pass fundamental standards through international standard (IEC 60884-1) and Korean standard (K 60884-1) tests. Third, it had to pass both several mechanical and electrical tests which is more strict than fundamental standards and vibration and impact tests following KS standards for enhancing its safety. After finishing 3 steps, we could obtain objective and fair data, develop environmental permanent joint type multiple socket-outlet without soldering crimped connection.

An anti-noise real-time cross-correlation method for bolted joint monitoring using piezoceramic transducers

  • Ruan, Jiabiao;Zhang, Zhimin;Wang, Tao;Li, Yourong;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.281-294
    • /
    • 2015
  • Bolted joint connection is the most commonly used connection element in structures and devices. The loosening due to external dynamic loads cannot be observed and measured easily and may cause catastrophic loss especially in an extreme requirement and/or environment. In this paper, an innovative Real-time Cross-Correlation Method (RCCM) for monitoring of the bolted joint loosening was proposed. We apply time reversal process on stress wave propagation to obtain correlation signal. The correlation signal's peak amplitude represents the cross-correlation between the loosening state and the baseline working state; therefore, it can detect the state of loosening. Since the bolt states are uncorrelated with noise, the peak amplitude will not be affected by noise and disturbance while it increases SNR level and increases the measured signals' reliability. The correlation process is carried out online through physical wave propagation without any other post offline complicated analyses and calculations. We implemented the proposed RCCM on a single bolt/nut joint experimental device to quantitatively detect the loosening states successfully. After that we implemented the proposed method on a real large structure (reaction wall) with multiple bolted joint connections. Loosening indexes were built for both experiments to indicate the loosening states. Finally, we demonstrated the proposed method's great anti-noise and/or disturbance ability. In the instrumentation, we simply mounted Lead Zirconium Titanate (PZT) patches on the device/structure surface without any modifications of the bolted connection. The low-cost PZTs used as actuators and sensors for active sensing are easily extended to a sensing network for large scale bolted joint network monitoring.