• Title/Summary/Keyword: joint bit rate control

Search Result 13, Processing Time 0.026 seconds

Joint Quality Control of VBR MPEG Video Programs (VBR MPEG 비디오 프로그램들의 결합 화질 제어)

  • 홍성훈;김성대
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.591-596
    • /
    • 1999
  • In this paper, we present a joint quality control system to be able to accurately control the relative picture quality among the video programs in terms of PSNR. The joint quality control system allows variable bit rate (VBR) for each video program to maintain the pre-determined relative picture quality among the aggregated video programs while keeping a constant sum of the bit rates for all programs to be transmitted over a single constant bit rate (CBR) channel. This is achieved by simultaneous controlling the video encoders to generate VBR video streams at the central controller. Furthermore we also suggest buffer regulation method based on the analysis of the constraints imposed by sender/receiver buffer sizes and total transmission rate. Through various simulation results, it is found that our quality control systems guarantee that the video buffers do not overflow and underflow and the quality control errors do not exceed 0.1 ㏈.

  • PDF

Joint Quality Control of MPEG-2 Video Programs for Digital Broadcasting Services (디지털 방송 서비스를 위한 MPEG-2 비디오 프로그램들의 결합 화질 제어)

  • 홍성훈;김성대
    • Journal of Broadcast Engineering
    • /
    • v.3 no.1
    • /
    • pp.69-84
    • /
    • 1998
  • In digital broadcasting, services such as digital satellite TV, cable TV and digital terrestrial TV, several video programs are compressed by MPEG-2, and then simultaneously transmitted over a conventional CBR (Constant Bit Rate) broadcasting channel. In this paper, we propose a joint quality control scheme to be able to accurately control the relative picture quality among the video programs, which is achieved by simdt;,nL'Ously controlling the video encoders to generate the VBR (Variable Bit Rate) compressed video streams. Our quality control scheme can prevent the video buffer overflow and underflow by total target bit allocation process, and also exactly control the relative picture quality in terms of PSNR (Peak Signal to Noise Ratio) between some programs requiring higher picture quality and others by rate-distortion modification. Furthermore we present a rate-distortion estimation method for MPEG-2 video, which is base of our joint quality control, and verify its performance by experiments. The most attractive features of this estimation method are as follows: 1) computational complexity is low because main operation for the estimation is to calculate the histogram of OCT coefficients into quantizer; 2) estimation results are very accurate enough to be applied to the practical MPEG-2 video coding applications. Simulation results show that the proposed joint quality control scheme accurately controls the relative picture quality among the video progran1s transmitted over a single channel as well as provides more consistent and higher picture quality than independent coding scheme that encodes each program independently.

  • PDF

JOINT POSITION COMTROL SYSTEM FOR FARA ROBOTS OF SAMSUNG ELECTROICS

  • Kim, Hyo-Kyu;Kim, Dong-Il;Kim, Sungkuwn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.913-916
    • /
    • 1990
  • In this paper, attempts have been made to control AC synchronous servo motor used as actuators of joints of the FARA robot with high dynamic performance and precise positioning. The AC synchronous servo motors used in FARA robots have resolves as position sensors. Resolver to digital converters are used in order to obtain the information of rotor speed and position from resolver outputs. The proposed joint position control system consists of four speed controller and one position controller. Analog methods are used in the position controller, while digital methods are used in the position controller. For precise position control, PID control algorithm and interpolation functions are executed in two 16 bit microprocessors with sampling rate 2ms. Experimental results show that the proposed joint position control system can be effectively applied to industrial robots in order to obtain high dynamic performance and precise positioning. The proposed joint position control system is being used in the control of FARA robots of Samsung Electronics.

  • PDF

Robot controller with 32-bit DSP chip (32 비트 DSP를 사용한 로보트 제어기의 개발)

  • 김성권;황찬영;전병환;이규철;홍용준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.292-298
    • /
    • 1991
  • A new 6-axis robot controller with a high-speed 32-bit floating-point DSP TMS32OC30 has been developed in Samsung Electronics. The controller composed of Intel 80386 microprocessor for the main controller, and TKS32OC30 DSP chip for joint position controller. The characteristics of the controller are high sampling rate of 200us and fast reponsibility. The main controller supports MS-DOS, kinematics, trajectory planning, and sensor fusion functions which are vision, PLC, and MAP. The one high speed DSP chip is used for controlling 6 axes of a robot in 200us simultaneously. The control law applied is PID controller including a velocity feedforvard in joint position controller. The performance tests, such as command following, CP, were conducted for the controller integrated with a 6 axes robot developed in Samsung Electronics. The results showed a good performance. This controller can also perform the system control with other controllers, the communication with high priority controllers, and visual information processing.

  • PDF

Joint Rate Control Scheme for Terrestrial Stereoscopic 3DTV Broadcast (스테레오스코픽 3차원 지상파 방송을 위한 합동 비트율 제어 연구)

  • Chang, Yongjun;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.14-17
    • /
    • 2010
  • Following the proliferation of three-dimensional video contents and displays, many terrestrial broadcasting companies prepare for starting stereoscopic 3DTV service. In terrestrial stereoscopic broadcast, it is a difficult task to code and transmit two video sequences while sustaining as high quality as 2DTV broadcast attains due to the limited bandwidth defined by the existing digital TV standards such as ATSC. Thus, a terrestrial 3DTV broadcasting system with heterogeneous video coding systems is considered for terrestrial 3DTV broadcast where the left image and right images are based on MPEG-2 and H.264/AVC, respectively, in order to achieve both high quality broadcasting service and compatibility for the existing 2DTV viewers. Without significant change in the current terrestrial broadcasting systems, we propose a joint rate control scheme for stereoscopic 3DTV service. The proposed joint rate control scheme applies to the MPEG-2 encoder a quadratic rate-quantization model which is adopted in the H.264/AVC. Then the controller is designed for the sum of two bit streams to meet the bandwidth requirement of broadcasting standards while the sum of image distortions is minimized by adjusting quantization parameter computed from the proposed optimization scheme. Besides, we also consider a condition on quality difference between the left and right images in the optimization. Experimental results demonstrate that the proposed bit rate control scheme outperforms the rate control method where each video coding standard uses its own bit rate control algorithm in terms of minimizing the mean image distortion as well as the mean value and the variation of absolute image quality differences.

  • PDF

Joint Spatial-Temporal Quality Improvement Scheme for H.264 Low Bit Rate Video Coding via Adaptive Frameskip

  • Cui, Ziguan;Gan, Zongliang;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.426-445
    • /
    • 2012
  • Conventional rate control (RC) schemes for H.264 video coding usually regulate output bit rate to match channel bandwidth by adjusting quantization parameter (QP) at fixed full frame rate, and the passive frame skipping to avoid buffer overflow usually occurs when scene changes or high motions exist in video sequences especially at low bit rate, which degrades spatial-temporal quality and causes jerky effect. In this paper, an active content adaptive frame skipping scheme is proposed instead of passive methods, which skips subjectively trivial frames by structural similarity (SSIM) measurement between the original frame and the interpolated frame via motion vector (MV) copy scheme. The saved bits from skipped frames are allocated to coded key ones to enhance their spatial quality, and the skipped frames are well recovered based on MV copy scheme from adjacent key ones at the decoder side to maintain constant frame rate. Experimental results show that the proposed active SSIM-based frameskip scheme acquires better and more consistent spatial-temporal quality both in objective (PSNR) and subjective (SSIM) sense with low complexity compared to classic fixed frame rate control method JVT-G012 and prior objective metric based frameskip method.

Joint video coding for multiple video program transmission based on rate-distortion estimation (다중 비디오 프로그램 전송을 위한 비트율-왜곡 추정 기반의 결합 비디오 부호화)

  • 홍성훈;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.5
    • /
    • pp.1325-1341
    • /
    • 1998
  • A conventional CBR channel is now capable of delivering several digitally compressed video programs due to recent advances in video compression, such as MPEG-2, and digital transmission technology. This paper presents a joint video coding scheme that is to maintain a constant sum of bit rates for all the programs but to allow the variable bit rate for individual program in the transimission environment mentioned above. Thus advantages of VBR video compression can be obtained. This paper contributes in two aspects. First, a rate-distortion estimation method for MPEG-2 video is proposed, which enavle us predict the amount of bits and the distortion generated from an encoded picture at a given quantization step size and vice versa. The most attractive features of the proposed rate-distortion estimation method are its accuracy and a computational complexity low enough to be applied to real-time video coding applications. Second, this paper presents an efficient and accurate joint rate control scheme using the rate-distortion estimation results and verifies its performance with experiments. The experimental results show that our coding scheme gives a significant gain even though a small number of video programs are coded jointly. For example, a stable picture quality is maintained among the video programs as well as within a program, and additional extra programs can be transmitted over the same channel bandwidth if the proposed joint video coding scheme is used.

  • PDF

Dual Codec Based Joint Bit Rate Control Scheme for Terrestrial Stereoscopic 3DTV Broadcast (지상파 스테레오스코픽 3DTV 방송을 위한 이종 부호화기 기반 합동 비트율 제어 연구)

  • Chang, Yong-Jun;Kim, Mun-Churl
    • Journal of Broadcast Engineering
    • /
    • v.16 no.2
    • /
    • pp.216-225
    • /
    • 2011
  • Following the proliferation of three-dimensional video contents and displays, many terrestrial broadcasting companies have been preparing for stereoscopic 3DTV service. In terrestrial stereoscopic broadcast, it is a difficult task to code and transmit two video sequences while sustaining as high quality as 2DTV broadcast due to the limited bandwidth defined by the existing digital TV standards such as ATSC. Thus, a terrestrial 3DTV broadcasting with a heterogeneous video codec system, where the left image and right images are based on MPEG-2 and H.264/AVC, respectively, is considered in order to achieve both high quality broadcasting service and compatibility for the existing 2DTV viewers. Without significant change in the current terrestrial broadcasting systems, we propose a joint rate control scheme for stereoscopic 3DTV service based on the heterogeneous dual codec systems. The proposed joint rate control scheme applies to the MPEG-2 encoder a quadratic rate-quantization model which is adopted in the H.264/AVC. Then the controller is designed for the sum of the left and right bitstreams to meet the bandwidth requirement of broadcasting standards while the sum of image distortions is minimized by adjusting quantization parameter obtained from the proposed optimization scheme. Besides, we consider a condition on maintaining quality difference between the left and right images around a desired level in the optimization in order to mitigate negative effects on human visual system. Experimental results demonstrate that the proposed bit rate control scheme outperforms the rate control method where each video coding standard uses its own bit rate control algorithm independently in terms of the increase in PSNR by 2.02%, the decrease in the average absolute quality difference by 77.6% and the reduction in the variance of the quality difference by 74.38%.

Generalized Joint Channel-Network Coding in Asymmetric Two-Way Relay Channels

  • Shen, Shengqiang;Li, Shiyin;Li, Zongyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5361-5374
    • /
    • 2016
  • Combining channel coding and network coding in a physical layer in a fading channel, generalized joint channel-network coding (G-JCNC) is proved to highly perform in a two-way relay channel (TWRC). However, most relevant discussions are restricted to symmetric networks. This paper investigates the G-JCNC protocols in an asymmetric TWRC (A-TWRC). A newly designed encoder used by source nodes that is dedicated to correlate codewords with different orders is presented. Moreover, the capability of a simple common non-binary decoder at a relay node is verified. The effects of a power match under various numbers of iteration and code lengths are also analyzed. The simulation results give the optimum power match ratio and demonstrate that the designed scheme based on G-JCNC in an A-TWRC has excellent bit error rate performance under an appropriate power match ratio.

Implementation of a control system for a telerobot using DSP (DSP를 이용한 원격 로봇의 제어 시스템 구현)

  • 노철래;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.844-849
    • /
    • 1991
  • A high speed control system for a telerobot using DSP is developed. The system is designed to resolve computational burden in advanced algorithms. The design is assumed to h ave no specific algorithm and robot configuration. The system is composed of a teaching box, a DSP board, a set of servo drivers and 16 bit microcomputer system. The teaching box is designed as a man-machine interface, which has two joysticks with three degrees of freedom for velocity generation in Cartesian space. The DSP board, i.e. DSP56000ADS based on a 10.25MIPS digital signal processor, DSP56001, computes the inverse Jacobian matrix which transforms Cartesian velocity into joint velocity. A resolved motion rate control algorithm for a 5 degrees of freedom manipulator was implemented. About 100 Hz sampling rate was achieved in this system.

  • PDF