• Title/Summary/Keyword: joint angle of comfort

Search Result 5, Processing Time 0.031 seconds

Joint Angles of Comfort for Females Based on the Psychophysical Scaling Method (심물리학적 방법을 이용한 여성의 안락 동작범위)

  • Kee, Do-Hyung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.81-93
    • /
    • 2002
  • This study aims to provide joint angles of comfort for females, based on the psychophysical scaling method. Ten female subjects participated in the experiment for measuring perceived discomfort for varying joint motions. The subjects were instructed to maintain given joint motions for a minute, and to rate their perceived discomfort for the motions during a minute's rest by using the free modulus method of the magnitude estimation. Joint angles of comfort were calculated from the regression equations based on the experimental results, in which levels of joint motions were used as independent variables and perceived discomforts as dependent variables. The results showed that joint angles of comfort for the joint motions investigated were much smaller than full range of motions for corresponding joint motions. The ratios of joint angle of comfort to its range motion for the hip were found to be smallest of all joint motions dealt with in this study, and those for the neck were the largest. In addition, comfortable joint angles for females were much smaller than those for males. It is recommended that when designing or evaluating workplaces ergonomically, different comfortable joint angles should be applied according to workers' or population's gender.

An Evaluation of Aerobic Exercise Wear Mobility as a Basic Criterion for Universal Design (에어로빅복의 유니버설 디자인을 위한 동작 적합성 평가)

  • Sohn, Ju-Hee;Choi, Jeong-Wha;Kang, Tae-Jin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.3 s.162
    • /
    • pp.343-350
    • /
    • 2007
  • This study compared and studied the clothing mobility of two types of aerobic clothes - those made of currently popular stretch materials and those made of new stretch materials that were specially developed for this study. The focus of the comparison was on the range of joint movement during activity, and the physiological burden imposed on the body by the clothes. In total, 18 experiments were carried out under controlled conditions in an artificial climatic chamber with a temperature of $25{\pm}1^{\circ}C$, air humidity of $60{\pm}5^{\circ}C$ and negligible air movement. Each exercise program consisted of a 30-minute of aerobic workout and a 20-minute rest following the exercise. Measurements were taken to determine the following: physiological reactions (whole-body and local sweat rates), subjective sensations(of temperature, humidity, comfort, tightness, and clothing wetness), joint angle(measured with a goniometer), and so on. The results of the study us as follows: Material B excels in clothing mobility. Material C excels in sweat absorbency and drying speed. Material A was found to be the hottest material, while material C was found to be slightly hot through the analysis of the change in pre- and post-exercise bodyweight(= amount of sweat). Regarding the amount of evaporated sweat, material A>material C>material B. Material B produced the smallest amount of evaporated sweat. The wider the range of joint movement, the smaller the amount of sweat and the lower the average skin temperature.

Effects of Preferred Arch Height and Hardness of the Insole on Static Arch Height and Ankle Stability (인솔의 아치높이 및 경도 선호도가 정적 아치 높이 및 발목 안정성에 미치는 영향)

  • Sihyun Ryu;Young-Seong Lee;Soo-Ji Han;Sang-Kyoon Park
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.1
    • /
    • pp.25-33
    • /
    • 2023
  • Objective: The purpose of this study was to investigate the differences in static arch height and ankle stability according to the preference for insole height and hardness in the arch area. Method: The study participants were 20 adult males (age: 22.7 ± 1.8 yrs., height: 175.3 ± 4.3 cm, body weight: 72.5 ± 7.7 kg). First, the arch heights of all subjects were measured in static postures (sitting and standing). The inversion and eversion movements of the ankle joint were analyzed during walking (1.3 m/s & 1.7 m/s) and running (2.7 m/s & 3.3 m/s). The variables (static arch height, and inversion and eversion angle of ankle joint) were compared by classifying groups according to the preference for the height and hardness of the arch of the insole. First, it was divided into a high arch insole preference group (HAG, n=8) and a low arch insole preference group (LAG, n=12) according to the preference for the arch height of the insole. Second, it was divided into a high hardness insole preference group (HHG, n=7), medium hardness insole preference group (MHG, n=7), and low hardness insole preference group (LHG, n=6), according to the preference for the arch hardness of the insole. Results: First, the range of motion (ROM) of inversion-eversion at the ankle joint during walking was statistically smaller in HAG than in LAG (p<.05). Second, the arch height change of HHG was statistically greater than that of MHG and LHG (p<.05). Conclusion: In the case of flexible flat feet with a large change in arch height, providing a high hardness arch insole that can disperse foot pressure can improve comfort. It was found that people with high medial and lateral sway of the ankle joint preferred a low arch insole, but it is necessary to differentiate and compare the insole heights of the arch part in detail. In addition, in the case of fast motion such as running, the preference for the arch height and hardness of the insole was not related to the static arch height and ankle stability.

Development of Sleeve Patterns of Structural Firefighting Protective Clothing using by 3D Body Shape and 3D Motion Analysis (3차원 인체형상과 3차원 동작분석에 의한 방화복 소매패턴 개발)

  • Han, Sul-Ah;Nam, Yun-Ja;Yoon, Hye-Jun;Lee, Sang-Hee;Kim, Hyun-Joo
    • Fashion & Textile Research Journal
    • /
    • v.14 no.1
    • /
    • pp.109-121
    • /
    • 2012
  • This study aims at developing ergonomics patterns for the sleeve of structural firefighting protective clothing through 3D motion analysis in order to ensure efficiency and safety of firefighters who are exposed to harmful environment at work. A new research pattern was developed by applying the total results of 3D motion analysis, changes of body surface length measurements, and 2D data on 3D body shape analysis on the size 3 patterns of the existing coat sleeve. For the sleeves, we used the body surface length of the range of shoulder's flexion and the joint angle of the range of wrist's ulnar deviation. And for the production of structural firefighting protective clothing using the research pattern, we recruited a recognized producer of structural firefighting protective clothing designated by KFI. Unlike everyday clothes, structural firefighting protective clothing should be able to fully protect the wearers from the harmful environment that threatens their lives and should not cause any restrictions on their movement. Therefore, the focus of research and development of such protective clothing should be placed on consistent development of new technologies and production methods that will provide protection and comfort for the wearer rather than production cost reduction or operational efficiency. This study is meaningful as it applied 3D motion analysis instead of the existing methods to develop the patterns. In particular, since 3D motion analysis enables the measurement of the range of motion, there should be continuous research on the development of ergonomics patterns that consider workers' range of motion.

The Effect of High-Heeled Shoes With Total Contact Inserts in the Gait Characteristics of Young Female Adults During Lower Extremity Muscle Fatigue (하지 근육의 피로상태 동안 높은 굽 신발에 적용한 전면접촉인솔이 젊은 여성의 보행 특성에 미치는 영향)

  • Ko, Eun-Hye;Choi, Houng-Sik;Kim, Tack-Hoon;Cynn, Heon-Seock;Kwon, Oh-Yun;Choi, Kyu-Han
    • Physical Therapy Korea
    • /
    • v.15 no.1
    • /
    • pp.38-45
    • /
    • 2008
  • This study investigated gait characteristics, kinematics, and kinetics in the lower extremities between two different shoe conditions (high heeled shoes (7 cm), and high heeled shoes with a total contact insert (TCI)) after lower extremity muscle fatigue. Although TCI shave been applied in high heeled shoes to increase comfort and to decrease foot pressure, no study has attempted to identify the effects of TCI in fatigue conditions. The purpose of this study was to determine the effects of walking in high heeled shoes with TCI after lower extremity muscle fatigue was induced. This study was carried out in a motion analysis laboratory at Hanseo University. A volunteer sample of 14 healthy female subjects participated. All in fatigue conditions, the subjects were divided into two groups. The muscle fatigue was induced by 40 voluntary dorsi- and plantar-flexion exercises and 40 heel-rise exercises of the dominant foot. Surface electromyography was used to confirm the localized muscle fatigue using power spectral analysis of three muscles (tibialis anterior, gastrocnemius medialis and lateralis). The results were as follows: (1) In muscle fatigue conditions, the use of TCI decreased the peak flexion angle of the hip joint significantly in the early stance phase (p<.05) and increased the peak hip flexion moment in the terminal stance phase (p<.05). (2) In muscle fatigue conditions, the application of TCI also increased peak hip power generation in the early stance phase and peak hip power absorption in the terminal stance phase (p<.05). (3) In muscle fatigue conditions, the use of TCI reduced the impact force significantly and increased the secondary peak vertical GRF. These findings suggest that the TCI may provide beneficial effects when muscle fatigue occurs for a high heeled shoe gait. Future research employing the patient population and various types of TCI materials are required to clarify the effects of TCI.

  • PDF