• 제목/요약/키워드: joint angle & moment

검색결과 98건 처리시간 0.023초

운동화의 생체역학적 평가시 하지 회내운동의 운동학적 평가변인에 대한 상해 기준치 연구 (The Study on critical Value of Kinematical Evaluation Variables of Lower Extremity Pronation in Biomechanical Evaluation of Running Shoes)

  • 곽창수;전민주;권오복
    • 한국운동역학회지
    • /
    • 제16권4호
    • /
    • pp.175-187
    • /
    • 2006
  • The purpose of this study was to find the relationship between Achilles tendon angle, angular velocity from 2D cinematography utilized to easily analyze the functions of shoes, ankle joint moment, knee joint moment, and hip joint moment from 3D cinematography utilized to predict the injury. Also, this study was to provide the optimal standard to analyze the injury related to the shoes. Subjects in this study were 30 university male students and 18 conditions (2 types of running speed, 3 of midsole hardness, 3 of midsole height) were measured using cinematography and force platform. The results were as following. 1) Hip joint abduction moment was effected by many variables such as running speed, midsole height, maximum achilles tendon angle, ground reaction force. 2) Knee joint rotational moment in running was approximately 1/10 - 1/4 times of the injury critical value and eversion moment was approximately 1/4 - 1/2 times of the injury critical value. 3) Ankle joint pronation moment in running was 1/3 - 1/2 times of the injury critical value. 4) Knee joint rotational moment was found to be irrelevant with maximum achilles tendon angle or angular velocity. 5) Pronation from running was thought to be relevant to rather eversion moment activity than rotational moment activity of knee joint. 6) Plantar flexion abductor of ankle showed significant relationship with the ground reaction force variable. 7) When the loading rate for ground reaction force in passive region increased, extensor tended to be exposed to the injury. Main variables in biomechanical analysis of shoes were impact absorption and pronation. Among these variables, pronation factor was reported to be relevant with knee injury from long duration exercise. Achilles tendon angle factor was utilized frequently to evaluate this. However, as the results of this study showed, the relationship between these variables and injury relating variable of knee moment was so important. Studies without consideration on this finding should be reconsidered and reconfirmed.

스포츠에어로빅스 팔착지 동작의 연계관절 각도와 모멘트분석 (Analysis of connecting joint anglle and moment in arm landing action in Sports Aerobics)

  • 유실
    • 한국운동역학회지
    • /
    • 제13권3호
    • /
    • pp.311-325
    • /
    • 2003
  • A relation between the movement range of arms and arising moment has been studied to find out efficient movement range to minimize impact concerning arm landing in sports aerobics. Four male athletes who won top three in national-level sports aerobics competition were chosen for the experiment. They were allowed to jump in between two force platform so that the right hand and the right leg could land onto the front and rear force platform, respectively. The sampling frequency was 200 Hz. The main conclusions based on the analysis of the angle and joint moment parameters of wrist, elbow, and shoulder are as follows: 1. The wrist moment was small when its angle was small, indicating that the dorsi-flexion of the wrist joint offered a positive influence to reduce wrist moment. 2. The elbow angle increased as wrist angle decreased and vice versa. This means that the movement range of the wrist joint affects that of the elbow joint. The darsi-flexion of the wrist is the position to absorb the impact of the elbow effectively rather than to absorb the impact of the wrist itself. The impact is absorbed by the flexion of wrist joint rather than the wrist. 3. The degree of moment transfer of the shoulder joint, having absorbed the impact from the elbow and elbow joint, became dependent on the efficiency of the fore-joints impact absorption.

Effects of Targeted Knee Flexion Angle on the Biomechanical Factors of Upward and Downward Phases during Forward Lunge

  • Lim, Young-Tae;Park, Jun Sung;Lee, Jae Woo;Kwon, Moon-Seok
    • 한국운동역학회지
    • /
    • 제27권2호
    • /
    • pp.125-132
    • /
    • 2017
  • Objective: The aim of this study was to investigate the effect of targeted knee flexion angle on biomechanical factors of knee joint between upward and downward phases during the forward lunge. Method: Eight elderly subjects (age: $22.23{\pm}1.51years$, weight: $69{\pm}6.63kg$, height: $174.88{\pm}6.85cm$) participated in this study. All reflective marker data and ground reaction force during a forward lunge were collected. The knee joint movement and reaction force and joint moment at maximum knee flexion angle were compared by repeated measures one-way analysis of variance (ANOVA) (p<.05). The peak knee joint reaction force and joint moment between upward and downward phases were compared by repeated measures two-way ANOVA (p<.05). Results: The anterior and vertical knee joint movements, reaction force, and extensor moment of $80^{\circ}$ targeted knee flexion condition at maximum knee flexion angle was greater than both $90^{\circ}$ and $100^{\circ}$ conditions (p<.05). The $80^{\circ}$ knee flexed angle condition had greater peak joint reaction force and extensor moment compared with both $90^{\circ}$ and $100^{\circ}$ conditions between upward and downward phases during the forward lunge. Conclusion: As the targeted knee joint flexion angle increases, knee joint movement and kinetic variables become greater during the forward lunge exercise.

보행 속도에 따른 하지 관절의 각도와 모멘트의 상관관계 (Correlation between Lower Extremities Joint Moment and Joint Angle According to the Different Walking Speeds)

  • 신성휴;이효근;권문석
    • 한국운동역학회지
    • /
    • 제18권2호
    • /
    • pp.75-83
    • /
    • 2008
  • 본 연구의 목적은 보행 속도의 차이에 따른 최대 관절 모멘트와 최대 모멘트 발생 시점의 관절 각도 상관관계를 규명하는데 있다. 8명의 $20{\sim}30$대 남성을 대상으로 보행 속도의 3가지 단계(1.5m/s, 1.8m/s, 2.1m/s)를 나누어 속도에 따른 보행을 실시하여 얻어진 결론은 다음과 같다. 1. 보행 속도가 증가함에 따라 무릎 최대 신전 모멘트는 증가하였고, 굴곡, 외전 모멘트는 큰 영향을 받지 않았다. 2. 최대 신전 모멘트가 발생하는 시점의 무릎 관절 각도는 굴곡의 움직임이 커졌으나, 다른 무릎 관절 각도에는 변화가 없었다. 3. 힙 최대 신전, 굴곡, 외전 모멘트는 증가하였다. 4. 최대 굴곡과 신전 모멘트가 발생하는 시점의 힙 관절 각도의 신전과 굴곡의 증가 현상을 보였으나, 최대 외전 모멘트가 발생하는 시점의 무릎 관절 각도에는 변화가 없었다. 5. 무릎 최대 신전, 굴곡, 외전 모멘트와 무릎 관절 각도를 least square method를 이용하여 적합도 검사를 실시한 결과 R2값이 높게 나타나 상관관계의 설명력이 높았다. 이렇게 근사된 곡선의 근사식은 보행 속도에 따른 무릎 관절의 평가 자료로 이용될 것으로 기대된다.

MVC 상태에서의 무릎관절 모멘트 추정을 위한 모델 개발 (Development of a Model for the Estimation of Knee Joint Moment at MVC)

  • 남윤수;이우은
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권3호
    • /
    • pp.222-230
    • /
    • 2008
  • This paper introduces a method of estimating the knee joint moment developed during MVC. By combining the Hill-type muscle model and analytic results on moment arm and musculotendon length change as a function of hip and knee joint angle, the knee joint moment at a specific knee joint angle during MVC is determined. Many differences between the estimated results and the experimental data are noted. It is believed that these differences originate from inaccurate information on the muscle-tendon parameters. The establishment of exact values for the subject's muscle parameters is almost impossible task. However, sensitivity analysis shows that the tendon slack length is the most critical parameter when applying the Hill-type muscle model. The effect of a change of this parameter on the muscle length force relationship is analyzed in detail.

크라우칭(Crouching) 스타트 시 뒤 블록 각도 변화에 따른 발목 관절의 기계적 에너지에 대한 연구 (A Study of the Ankle Joint to Mechanical Energy in Crouching Start According to the Backward Block Inclined Angle Increase)

  • 권문석;신성휴
    • 한국운동역학회지
    • /
    • 제15권1호
    • /
    • pp.19-28
    • /
    • 2005
  • The purpose of this study was to improve the ankle joint to mechanical energy in Crouching start according to the backward block inclined angle(F, F(+1), F(+2)) increase. For purpose of this study the ankle joint was considered as a single hinge joint rotation about a transverse axis. A two-dimensional(sagittal plane) analysis was performed on data collected from 3 spriters(university student). During Crouching start, the ankle joint moment showed a similar patterns according to the backward block inclined angle increase. The peak values of ankle joint moment was plantar flexion approximately 80% throughout the contact phase for Crouching start. The absorbed and generated energy represented different values from the backward block inclined angle increase at ankle joint. On the backward block inclined angle F, subject A($55^{\circ}$) and C($50^{\circ}$) Produced energy generation more than other block inclined angles. On the backward block inclined angle F(+2), subject B($50^{\circ}$) showed largest energy generation.

Effects of Landing Foot Orientations on Biomechanics of Knee Joint in Single-legged Landing

  • Joo, Ji-Yong;Kim, Young-Kwan
    • 한국운동역학회지
    • /
    • 제28권2호
    • /
    • pp.143-149
    • /
    • 2018
  • Objective: This study aimed to investigate the influence of landing foot orientations on biomechanics of knee joint in order to identify vulnerable positions to non-contact knee injuries during single-legged landing. Method: Seventeen men (age: $20.5{\pm}1.1 years$, height: $175.2{\pm}6.4cm$, weight: $68.8{\pm}5.8kg$) performed single-leg drop landings repeatedly with three different landing foot orientations. They were defined as toe-in (TI) $30^{\circ}$ adduction, neutral (N, neutral), and toe-out (TO) $30^{\circ}$ abduction positions. Results: The downward phase time of TI was significantly shorter than those of N and TO. The flexion and valgus angle of N was greater than those of TI and TO at the moment of foot contact. At the instance of maximum knee flexion, N showed the largest flexion angle, and TO position had the largest varus and external rotation angles. Regarding ground reaction force (GRF) at the moment of foot contact, TO showed the forward GRF, while others showed the backward GRF. TI indicated significantly larger mediolateral GRF than others. As for the maximum knee joint force and joint moment, the main effect of different foot positions was not significant. Conclusion: TI and TO might be vulnerable positions to knee injuries because both conditions might induce combined loadings to knee joint. TI had the highest mediolateral GRF with a shortest foot contact time, and TO had induced a large external rotation angle during downward phase and the peak forward GRF at the moment of foot contact. Conclusively, N is the preferred landing foot orientation to prevent non-contact knee injuries.

Biomechanical Analysis of Golf Driver Swing Motion According to Gender

  • Bae, Kang Ho;Lee, Joong Sook;Han, Ki Hoon;Shin, Jin Hyung
    • 한국운동역학회지
    • /
    • 제28권1호
    • /
    • pp.1-8
    • /
    • 2018
  • Objective: The purpose of this study is to investigate the differences in biomechanical variables of golf driving motion according to gender. Method: A total of 21 healthy golfers (11 men and 10 women) who have more than 5 years of professional experience and have been registered in the Korea Golf Association was recruited. A 250-Hz 8-camera motion capture system (MX-T20, Vicon, LA, USA) was used to capture the motion trajectories of a total of 42 reflective markers attached to the golfer's body and club. Moreover, two 1,000-Hz AMTI force plates (AMTI OR6-7-400, AMTI, MA, USA) were used to measure the ground reaction force. The mean and standard deviation for each parameter were then calculated for both groups of 21 subjects. SPSS Windows version 23.0 was used for statistical analysis. The independent t-test was used to determine the differences between groups. An alpha level of .05 was utilized in all tests. Results: There were differences in joint angles according to gender during golf driver swing. Men showed a statistically significantly higher peak joint angle and maximum range of angle in sagittal and frontal axis of the pelvis, hip, and knee. Moreover, women's swing of the pelvis and hips was found to have a pattern using the peak joint angle and range of angle in the vertical axis of the pelvis and hip. There were the differences in peak joint moment according to gender during golf driver swing. Men used higher joint moment in the downswing phase than women in the extensor, abductor, and external rotator muscles of the right hip; flexor and adductor muscles of left hip joint; and flexor and extensor muscles of the right knee. Conclusion: This result reveals that male golfers conducted driver swing using stronger force of the lower body and ground reaction force based on strength of hip and thigh than female golfers.

3차원적 동작 분석기를 이용한 건강한 여자 노인의 하지 정렬 상태와 슬관절 내전 모멘트의 상관 관계에 관한 연구 (3-Dimensional Gait analysis and the relationship between lower limb alignment and knee adduction moment in elderly healthy women)

  • 조유미;이완희
    • 대한물리치료과학회지
    • /
    • 제10권1호
    • /
    • pp.90-101
    • /
    • 2003
  • Gait analysis can provide a better understanding of how the alignment of the lower limb and foot can contribute to force observed at the knee. Anatomic and mechanical factors that affect loading in the knee pint can contribute to pathologic change seen at the knee in degenerative pint disease and should be considered in treatment plan. The purpose of this study is to present the gait analysis data and to determine whether there is any relationships between alignment of the lower limb, foot progression angle and knee pint moments in elderly healthy women with 3-dimensional motion analyzer. The results were as follows; 1. Cadence showed 114.8 steps/min, gait speed showed 1.05 m/s, time per a stride showed 1.06 sec, time per a step showed 0.53 sec, single-supporting phase was 0.41 sec, double-supporting phase was 0.24 sec, stride length was 1.04 m, Step length was 0.56 m. 2. According to the parameters of kinematics, the maximal knee flexion angle through swing phase showed left $46.82^{\circ}$, right $40.19^{\circ}$ and the maximal knee extension angle showed left $-1.32^{\circ}$, right $2.01^{\circ}$. knee varus showed left $26.90^{\circ}$, right $30.93^{\circ}$. 3. Moment, one of kinetic parameters of knee pint the maximal flexion moment showed left 0.363. Nm/kg, right 0.464 Nm/kg and maximal extension moment showed left 0.389 Nm/kg, right 0.463 Nm/kg. The maximal. adduction moment showed left 0.332 Nm/kg, right 0.379 Nm/kg and the maximal internal rotatory moment showed left 0.13 Nm/kg, right 0.140 Nm/kg. 4. On sagittal plane, the maximal power of knee joint showed left 0.571 J/kg, right 0.629 J/kg. On coronal plane, the maximal power of knee joint showed left 0.11 J/kg, right 0.12 J/kg. On transverse plane, the maximal power of knee joint showed left 0.058 J/kg, right 0.072 J/kg. 5. The subject who had varus alignment of the lower extremity had statistically higher in knee adduction moment in mid stance phase. 6. The subject who had large foot progression angle had statistically lower in knee adduction moment in late stance phase. A relationship was observed between the alignment of the lower extremity and the adduction moment of the knee joint during stance phase. Hence, we need some research to figure, out the change of adduction moment according to the sort of knee joint osteoarthritis and the normal geriatrics as well. And we also require more effective, specific therapeutic program by making use of those background of researches.

  • PDF

Effects of Combined Wedge on Angle and Moment of Ankle and Knee Joint During Gait in Patients With Genu Varus

  • Yang, Hae Sun;Choi, Houng Sik
    • 국제물리치료학회지
    • /
    • 제7권2호
    • /
    • pp.1025-1030
    • /
    • 2016
  • The purpose of this study was to investigate the effects of combined wedge on the range of motion in ankle and knee joint, ankle eversion moment and knee adduction moment, and center of pressure excursion of foot for genu varus among adult men during gait. This study was carried out with 10 adult men for genu varus in a motion analysis laboratory in J university. The subjects of the experiment were measured above 5cm width between the knees on contact of both medial malleolus of ankle while standing. The width of their knees in neutral position was measured without the inversion or eversion of the subtalar joint by the investigator. The subjects of the experiment were ten who were conducted randomly for standard insole, insole with $10^{\circ}$ lateral on rear foot wedge, insole at $10^{\circ}$lateral on rear foot and $5^{\circ}$ medial on fore foot wedge. Before and after intervention, changes on the range of motion in ankle and knee joint, ankle eversion moment and knee adduction moment, and center of pressure excursion were measured. In order to compare analyses among groups; repeated one-way ANOVA and $Scheff{\acute{e}}$ post hoc test were used. As a result, combined wedge group was significantly decreased compared to control wedge group in terms of knee varus angle in mid-stance(p<.05). Combined wedge group was significantly decreased compared to lateral wedge group in terms of ankle eversion moment in whole stance(p<.05). Combined wedge group was significantly decreased compared to lateral wedge group in terms of knee adduction moment in whole stance(p<.05). Combined wedge group was significantly decreased compared to lateral wedge in terms of center of pressure excursion in whole stance(p<.05). The results of this study suggest that combined wedge for genu varus decreased ankle eversion moment and knee adduction moment upon center of pressure excursion. We hypothesize that combined wedge may also be effective in the protection excessive ankle pronation.