• Title/Summary/Keyword: jets and outflow

Search Result 22, Processing Time 0.024 seconds

WATER MASERS FROM THE PROTOSTELLAR DISK AND OUTFLOW IN THE NGC 1333 IRAS 4 REGION

  • Park, Geum-Sook;Choi, Min-Ho
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.123-125
    • /
    • 2007
  • NGC 1333 is a nearby star forming region, and IRAS 4A and IRAS 4BI are low-mass Class 0 protostars. IRAS 4A is a protobinary system. The NGC 1333 IRAS 4 region was observed in the 22 GHz water maser with a high resolution (0.08") using the Very Large Array. Two groups of masers were detected: one near A2 and the other near BI. Most of the masers associated with A2 are located very close (< 100 AU) to the radio continuum source. They may be associated with the circumstellar disk. Since no maser was detected near AI, the A2 disk is relatively more active than the Al disk. Most of the masers in the BI region are distributed along a straight line, and they are probably related with the outflow. As in many other water maser sources, the IRAS 4 water masers seem to trace selectively either the disk or the outflow. Considering the outflow lifetimes, the disk-outflow dichotomy is probably unrelated with the evolutionary stage of protostars. A possible explanation may be that both the outflow-maser and the disk-maser are rare phenomena and that detecting both kinds of maser around a single protostar may be even rarer.

MOLECULAR LINE STUDY OF L1014 WITH SRAO 6M TELESCOPE (L1014 분자운 핵에 대한 SRAO 6m 망원경을 이용한 분자선 관측연구)

  • Lee, Chang-Won
    • Publications of The Korean Astronomical Society
    • /
    • v.20 no.1 s.24
    • /
    • pp.1-5
    • /
    • 2005
  • We report molecular line observations of CO(1-0), $^{13}CO(1-0)$, CS(2-1), and HCN(1-0) with SRAO 6m telescope toward L1014-IRS which is thought to be a very faint infrared source embedded in previously known 'starless' core L1014. The CO(1-0) observations find several components with different velocities along the line of sight of L1014, $4km\;s^{-1}$ and between $40{\sim}50km\;s^{-1}$. We find a parsec scale CO molecular outflow at the $4km\;s^{-1}$ component for the first time the direction of which is coincident with that of the small scale (${\sim}500pc$) outflow previously found. Although the observation is not covered for whole area of the outflow, the size of the molecular outflow seems not very inconsistent with the expected age of L1014-IRS. More accurate size and shape of the molecular outflow from L1014-IRS will be determined from the full coverage mapping in CO over the outflow region in very near future.

Physical Connection between Ionized Outflows and Radio jets in Young Radio Quasars.

  • Hwang, Seong Hyeon;Kim, Minjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.65.2-65.2
    • /
    • 2020
  • We present NIR spectroscopic data of young radio quasars obtained from Flamingos-2 (F2) at Gemini-South. The targets are originally selected from Wide-Field Infrared Survey Explorer survey in combination with radio survey data, such as FIRST and NVSS. Our goal is to find observational evidence of jet-driven outflows, which is expected to be present in young luminous quasars from the theoretical studies. While 16 targets were observed with F2, narrow emission lines ([O III] or Hα) were detected in 7 targets. FWHM of the emission lines (up to 2500 km/s) were remarkably broad compared to ordinary quasars, revealing the presence of strong outflows. The black hole mass estimated from Eddington limit ranges from ~108 to 109 solar mass, indicating that the target quasars are likely to be progenitors of massive galaxies. Finally, we present the comparisons between the outflow velocity and the physical properties of radio jets derived from the VLA radio imaging data, in order to investigate the physical connection between the ionized outflows and radio jets.

  • PDF

UNVEILING COMPLEX OUTFLOW STRUCTURE OF UY Aur

  • PYO, TAE-SOO;HAYASHI, MASAHIKO;BECK, TRACY;DAVIS, CHRISTOPHER J.;TAKAMI, MICHIHIRO
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.109-112
    • /
    • 2015
  • We present [$Fe\;{\small{II}}$] ${\lambda}1.257{\mu}m$ spectra toward the interacting binary UY Aur with 0".14 angular resolution, obtained with the Near infrared Integral Field Spectrograph (NIFS) combined with the adaptive optics system Altair of the GEMINI observatory. In the [$Fe\;{\small{II}}$] emission, UY Aur A (primary) is brighter than UY Aur B (secondary). The blueshifted and redshifted emission between the primary and secondary show a complicated structure. The radial velocities of the [$Fe\;{\small{II}}$] emission features are similar for UY Aur A and B: ${\sim}-100km\;s^{-1}$ and ${\sim}+130km\;s^{-1}$ for the blueshifted and redshifted components, respectively. Considering the morphologies of the [$Fe\;{\small{II}}$] emissions and bipolar outflow context, we concluded that UY Aur A drives fast and widely opening outflows with an opening angle of ${\sim}90^{\circ}$ while UY Aur B has micro collimated jets.

Kinematics of the Envelope and Two Bipolar Jets in L1157

  • Kwon, Woojin;Fernandez-Lopez, Manuel;Stephens, Ian W.;Looney, Leslie W.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.72.3-72.3
    • /
    • 2016
  • A massive envelope and a strong bipolar outflow are the two most distinct structures of youngest protostellar systems. We present observational results from the Combined Array for Research in Millimeter-wave Astronomy (CARMA) toward the youngest (Class 0) protostellar system L1157. At an angular resolution of 5 arcseconds, we mapped its well-developed outflow in CO 2-1 over a span of approximately 5 arcminutes. Additionally, we imaged the central envelope with CO isotopes, CS, CN, and N2H+ with an angular resolution of about 2 arcseconds. We show that the bipolar outflow may be represented with a two jet model and constrain its physical properties such as precession/rotation directions, velocities, inclinations, and position angles via cube data fitting. In addition, we discuss the kinematic features of the envelope detected in CO isotopes and N2H+ and present the radius-dependent dust opacity spectral index.

  • PDF

Density distributions and Power spectra of outflow-driven turbulence

  • Kim, Jongsoo;Moraghan, Anthony
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.57.2-57.2
    • /
    • 2014
  • Protostellar jets and outflows are signatures of star formation and promising mechanisms for driving supersonic turbulence in molecular clouds. We quantify outflow-driven turbulence through three-dimensional numerical simulations using an isothermal version of the total variation diminishing code. We drive turbulence in real space using a simplified spherical outflow model, analyze the data through density probability distribution functions (PDFs), and investigate density and velocity power spectra. The real-space turbulence-driving method produces a negatively skewed density PDF possessing an enhanced tail on the low-density side. It deviates from the log-normal distributions typically obtained from Fourier-space turbulence driving at low densities, but can provide a good fit at high densities, particularly in terms of mass-weighted rather than volume-weighted density PDF. We find shallow density power-spectra of -1.2. It is attributed to spherical shocks of outflows themselves or shocks formed by the interaction of outflows. The total velocity power-spectrum is found to be -2.0, representative of the shock dominated Burger's turbulence model. Our density weighted velocity power spectrum is measured as -1.6, slightly less that the Kolmogorov scaling values found in previous works.

  • PDF

1.64 ${\mu}m$ features of Jets and Outflows from Young Stellar Objects in the Carina Nebula

  • Shinn, Jong-Ho;Pyo, Tae-Soo;Lee, Jae-Joon;Lee, Ho-Gyu;Kim, Hyun-Jeong;Koo, Bon-Chul;Sung, Hwankyung;Chun, Moo-Young;Lyo, A. Ran;Moon, Dae-Sik;Kyeong, Jaemann;Park, Byeong-Gon;Hur, Hyeonoh;Lee, Yong-Hyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.56.2-56.2
    • /
    • 2014
  • We present [Fe II] 1.64 ${\mu}m$ imaging observations for jets and outflows from young stellar objects over the northern part (${\sim}24^{\prime}{\times}45^{\prime}$) of the Carina Nebula, a massive star forming region. The observations were performed with IRIS2 of Anglo-Australian Telescope and the seeing was ~1.5". Eleven jets and outflows features are detected at eight different regions, and are termed as Ionized Fe Objects (IFOs). The [Fe II] features have knotty or elongated shapes, and the detection rate of IFOs against previously identified YSOs is 1.4%. Four IFOs show anti-correlated peak intensities in [Fe II] and $H{\alpha}$, where the ratio I([Fe II])/I($H{\alpha}$) is higher for longish IFOs than for knotty IFOs. We estimate the outflow mass loss rate from the [Fe II] flux using two different methods. The jet-driving objects are identified for three IFOs (IFO-2, -4, and -7). The ratios of the outflow mass loss rate over the disk accretion rate for IFO-4 and -7 are consistent with the previously reported values ($10^{-2}-10^{+1}$), while the ratio is higher for IFO-2. This excess may result from underestimating the disk accretion rate. Other YSO physical parameters show reasonable relations or trends.

  • PDF

HIGH ANGULAR RESOLUTION [Fe II] λ1.644 μ SPECTROSCOPY OF YSOS WITH SUBARU TELESCOPE

  • PYO TAE-SOO;HAYASHI MASAHIKO;NAOTO KOBAYASHI;TERADA HIROSHI;TOKUNAGA ALAN T.
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.249-252
    • /
    • 2005
  • We present results of the velocity-resolved spectroscopy of the [Fe II] $\lambda$1.644${\mu}m$ emission toward outflow sources with the Subaru Telescope at the angular resolution of 0.apos;16 ${\~}$ 0.apos;5 arcseconds. The observed sources are L1551 IRS 5, DG Tau, HL Tau and RW Aur, which are located in the Taurus-Aurigae Molecular Cloud, one of the closest star forming regions (0.apos;1 = 14 AU). We were able to resolve outflow structure in the vicinity of the sources at a scale of a few tens of AU. The position-velocity diagram of each object shows two velocity components: the high velocity component (HVC: 200 - 400 km $s^{-l}$) and the low velocity component (LVC: 50 - 150 km $s^{-l}$), which are clearly distinct in space and velocity. The HVC may be a highly collimated jet presumed from its narrow velocity width and high velocity. The LVC, on the other hand, may be a widely opened disk wind inferred from its broad velocity width and low velocity. The spectrum taken perpendicular to the L1551 IRS 5 outflow at its base shows that the LVC has a spatially wide subcomponent, supporting the above interpretation. We demonstrated that the [Fe II] 1.644 $\mu$ spectroscopy is a very powerful tool for the studies of fast jets and winds that directly emanate from star-disk systems.

Molecular Hydrogen Outflow in Infrared Dark Cloud Core MSXDC G53.11+00.05

  • Kim, Hyun-Jeong;Koo, Bon-Chul;Pyo, Tae-Soo;Davis, Christopher J.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.41.4-42
    • /
    • 2015
  • Outflows and jets from young stellar objects (YSOs) are prominent observational phenomena in star formation process. Indicating currently ongoing star formation and directly tracing mass accretion, they provide clues about the accretion processes and accretion history of YSOs. While outflows of low-mass YSOs are commonly observed and well studied, such studies for high-mass YSOs have been so far rather limited owing to their large distances and high visual extinction. Recently, we have found a number of molecular hydrogen (H2 1-0 S(1) at 2.12 micron) outflows in the long, filamentary infrared dark cloud (IRDC) G53.2 located at 1.7 kpc from UWISH2, the unbiased, narrow-band imaging survey centered at 2.12 micron using WFCAM/UKIRT. In IRDC G53.2 which is an active star-forming region with ~300 YSOs, H2 outflows are ubiquitously distributed around YSOs along dark filaments. In this study, we present the most prominent H2 outflow among them identified in one of the IRDC cores MSXDC G53.11+00.05. The outflow shows a remarkable bipolar morphology and has complex structures with several flows and knots. The outflow size of ~1 pc and H2 luminosity about ~1.2 Lsol as well as spectral energy distributions of the Class I YSOs at the center suggest that the outflow is likely associated with a high-mass YSO. We report the physical properties of H2 outflow and characteristics of central YSOs that show variability between several years using the H2 and [Fe II] images obtained from UWISH2, UWIFE and Subaru/IRCS+AO188 observations. Based on the results, we discuss the possible origin of the outflow and accretion processes in terms of massive star formation occurring in IRDC core.

  • PDF

Astrophysical Jet Engine and the Rotating Disk-Jet System of NGC 1333 IRAS 4A2

  • Choi, Min-Ho;Kang, Mi-Ju;Tatematsu, Ken'ichi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.84.2-84.2
    • /
    • 2011
  • Astrophysical jets play important roles in many interesting astronomical phenomena, such as star formation, gamma-ray bursts, and active galactic nuclei. The jets are thought to be driven by rotating disks through magneto-centrifugal processes. However, quantitative understanding of the jet-driving mechanism has been difficult because examples showing rotation in both disk and jet are rare. One of the important quantities in the models of jet engine is the size of the jet-launching region. The bipolar jet of the NGC 1333 IRAS 4A2 protostar shows a lateral velocity gradient, which suggests that the SiO jet is rotating around its axis. The jet rotation is consistent with the rotation of the accretion disk. The disk-jet rotation kinematics suggests that the jet-launching region on the disk, or the outflow foot-ring, has a radius of about 2 AU, which supports the disk-wind models.

  • PDF