• 제목/요약/키워드: jet pressure

검색결과 1,023건 처리시간 0.029초

Y-Jet노즐을 통한 저점도 액체의 유량 및 입경예측에 관한 연구 (Prediction of Flow Rate and Drop Size of Low Viscosity Liquid Through Y-Jet Atomizers)

  • 송시홍;이상용
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3377-3385
    • /
    • 1994
  • This paper introduces empirical correlations to obtain the gas/liquid flow rates and the spray drop size of low viscosity liquid injected by Y-jet twin-fluid atomizers. The gas flow rate is well correlated with the gas injection pressure and the mixing point pressure, based on the compressible flow theory. Similarly, the liquid flow rate is determined by the liquid injection pressure and the mixing point pressure, and a simple correlation for the liquid discharge coefficient at the liquid port was deduced from the experimental results. The mixing point pressure, which is one of the essential parameters, was expressed in terms of the gas/liquid flow rate ratio and the mixing port length. Disintegration and atomization mechanisms both within the mixing port and outside the atomizer were carefully re-examined, and a "basic" correlation form representing the mean diameter of drops was proposed. The "basic" correlation was expressed in terms of the mean gas density within the mixing port, gas/liquid mass flow rate ratio and the Weber number. Though the correlation is somewhat complicated, it represents the experimental data within an accuracy of ${\pm}15%$.EX>${\pm}15%$.

대기조성 치환 및 압력이 Jet A1 액적화염의 매연입자 생성에 미치는 영향에 관한 연구 (Effects of Atmospheric Composition Substitution and Pressure on Soot Formation of Jet-A1 Droplet Flames)

  • 남원식;류명호;이종원;박설현
    • 한국화재소방학회논문지
    • /
    • 제33권5호
    • /
    • pp.13-18
    • /
    • 2019
  • 본 연구에서는 한국형발사체와 유사한 작동환경에서 Jet A1 액체연료의 매연 입자특성에 대해 농도를 측정함으로써 그 결과를 고찰하였다. 발사체환경과 유사한 대기 조건을 모사하기 위해 연소챔버의 산소 농도를 30%로 유지하고 내부 압력을 0.06 MPa에서 0.1 MPa 까지 변화시켜가며 실험을 통해 수행하였고, 대기의 조성을 질소, 헬륨, 이산화탄소 가스로 치환하여 실험을 수행하였다. 직경이 2 mm인 Jet-A1 액적에 동일한 점화에너지를 인가하여 발생 되는 매연 입자의 농도를 전역 광소멸 기법을 이용하여 측정하였다. Jet-A1 액적 화염의 매연 입자입자의 농도는 모든 압력조건에서 대기의 조성이 질소로 치환된 경우 높았으며, 이산화탄소로 치환된 경우 가장 낮았다. 압력이 낮아질수록 매연의 입자농도가 감소하였고, 대기압력의 Pn 형태로 감소하는 경향을 확인하였다.

역분사 유동이 초음속 비행체에 미치는 영향에 대한 수치해석적 연구 (A Numerical Analysis of Counter Jet Flow Effect on the Blunt-Body Vehicle)

  • 서덕교;서정일;송동주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 춘계 학술대회논문집
    • /
    • pp.29-34
    • /
    • 2002
  • TIn this study, the counter-jet flows which designed for improvement of aerodynamic performance of the blunt body vehicle have been analyzed. The variations of the drag force and jet penetration depth due to changes in the stagnation properties of counter jet new such as total pressure, mach number, and total temperature. The counter jet flow, which is injected toward incoming supersonic freestream at stagnation region of blunt cone-cylinder vehicle, have been studied by using upwind flux difference splitting navier-stokes method. The changes in the stagnation pressure and Mach number resulted in large effects on the wall pressure and drag force, on the other hand tile total temperature changes did not.

  • PDF

Numerical Analysis on the Effect of Parameters that Affect the Flow Rate through the Tunnel with Jet Fan Ventilation System

  • Kim, Sa-Ryang;Hur, Nahmkeon;Kim, Young-Il;Kim, Ki-Jung
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권4호
    • /
    • pp.178-187
    • /
    • 2003
  • In this study, ventilation flow rate and pressure rise through a tunnel are simulated numerically using computational fluid dynamics (CFD) for various conditions such as roughness height of the surface of tunnel, swirl angle and hub/tip ratio of jet fan, and entrance and exit effects. By using a modified wall function, friction factor can be predicted with respect to the Moody chart within 10% of error for the circular pipe flow and 15% for the present tunnel. For more accurate design, the effect of the swirl angle and hub/tip ratio of jet fan, which is not included in the theoretical equation of pressure rise by jet fan needs to be considered.

초음속 역분사 유동이 초음속 비행체 성능에 미치는 영향에 대한 수치해석적 연구 (A Numerical Analysis of Supersonic Counter Jet Flow Effect on Performance of a Supersonic Blunt-Body)

  • 서덕교;서정일;송동주
    • 한국전산유체공학회지
    • /
    • 제7권3호
    • /
    • pp.1-8
    • /
    • 2002
  • The counter jet flow which is injected against the free stream at stagnation region of blunt body for improvement of aerodynamic performance has been studied by using upwind Navier-Stokes method. The variations of drag force and upwind forward penetration depth due to changes in the stagnation thermodynamic properties of counter jet flow such as total pressure, Mach number, and total temperature have been studied. The results show that the changes in the stagnation pressure and Mach number have large effects on the wall pressure and drag force, but the total temperature does not affect the wall pressure and drag force.

An Experimental Study on the Characteristics of Rectangular Supersonic Jet on a Flat Plate

  • Kwak, Ji-Young;Lee, Yeol
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권3호
    • /
    • pp.324-331
    • /
    • 2016
  • The present study focuses on the characteristics of a supersonic jet flowing from a rectangular nozzle exit on a flat plate. Flow visualization techniques using schlieren and kerosene-lampblack tracing are utilized to investigate shock reflection structures and boundary-layer separations over a flat plate. Wall pressure measurements are also carried out to quantitatively analyze the flow structures. All observations are repeated for multiple jet flow boundary conditions by varying the flap length and nozzle pressure ratio. The experimental results show that the jet flow structures over the flat plate are highly three-dimensional with strong bleeding flows from the plate sides, and that they are sensitive to plate length and nozzle pressure ratio. A multi-component force measurement device is also utilized to observe the characteristics of the jet flow thrust vectoring over the plate. The maximum thrust deflection angle of the jet is about $8^{\circ}$, demonstrating the applicability of thrust vector control via a flat plate installed at the nozzle exit.

동축이중원관 분류에 있어서의 유동 특성에 관한 연구 (A Study on the Flow Characteristics in Double Coaxial Pipe Jets)

  • 신창환;김경훈
    • 한국분무공학회지
    • /
    • 제1권4호
    • /
    • pp.46-53
    • /
    • 1996
  • The present study is aiming at improving the performance of main nozzle of an air jet loom with a modified reed and auxiliary nozzles. The double coaxial pipe jets consisting of a central air jet and an annular air jet have been experimentally investigated. The duter jet has a potential core and a constant velocity. The inner jet through an inner long pipe is induced by the subatmospheric pressure near the inner nozzle edge, and the jet velocity of an inner pipe is always lower than that of a outer pipe. The static pressures of the main nozzle over a wide range of the nozzle tank pressure were measured, and the nozzle velocity and Mach numbers were analytically calculated. Experiment81 results indicate that the critical condition of Mach number of unity to occur at the two positions in a main nozzle; one of them is the needle tip and the other is the acceleration tube exit An increase in the tank pressure causes the critical throat condition to occur at the two positions above. The velocity of acceleration-tube exit is maximum at the critical length L* and flow patter in acceleration-tube over critical lengh remains unstable.

  • PDF

노즐 중심에 설치한 마이크로 제트에 의한 충격파 관련소음 저감 (Shock Associated Jet Noise Reduction by a Microjet on the Centerline of the Main Jet)

  • 김진화;유정열
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.92-97
    • /
    • 2003
  • By using a centerbody injection, an effort to reduce shock assoicated noise is made in an underexpanded sonic nozzle with an exit diameter of 10mm. The centerbody or micro nozzle, aligned with the axis of the main jet has an o.d. of 2mm and i.d. of 1.5mm. When measured at 90$^{\circ}$ relative to the main jet the farfield noise spectra showed that the screech tones and broadband shock associated noise can be significantly reduced simply by varying the length of the centerbody and/or mass fraction of the microjet. The maximum reduction in overall sound pressure level (OASPL) was as much as 9 and 4 ㏈ at fully expanded jet Mach numbers Mi of 1.3 and 1.5, respectively, when the length of the centerbody was varied from 0 to 4 main nozzle diameters without blowing. With the aid of the blowing, the maximum reduction in OASPL increased to 12 and 7 ㏈ at M$\sub$j/=1.3 and 1.5, respectively. The impact pressure field in the main jet plume strongly suggested that the reduced periodic pressure distribution in the shear layers and/or centerline is responsible for the reduced screech and broadband shock associated noise. Therefore, the steady blowing by a micro centerbody is a promising technique for shock noise reduction in a supersonic jet.

  • PDF

Study on the frequency of self-excited pulse jet

  • Wang, Jian;Li, Jiangyun;Guan, Kai;Ma, Tianyou
    • International Journal of Fluid Machinery and Systems
    • /
    • 제6권4호
    • /
    • pp.206-212
    • /
    • 2013
  • Self-excited pulse jet is a specific nozzle with a closed chamber which can change a continuous jet into a pulse one. Energy of the pulse jet can be output not only unevenly but also with multifrequency. With the peak pressure of pulse jet, the hitting power would be 2~2.5 times higher than that of continuous jet. In order to reveal the correlation between the self-excited pulse frequency and nozzle diameter ratio, nozzle spacing and operating pressure, the model of 3D unsteady cavitation model has been used. We found that with the same nozzle structure parameters and the different operating pressure, the self-excited frequency and the width of peak crest are different, but the wave profiles are similar. With FFT, we also found that the less bandwidth of amplitude in low frequency range will lead to the wider wave crest of outlet velocity in its time domain, and the larger force of the strike will be gained. By studying the St of self-excite nozzle, not only the frequency of a certain nozzle can be predicted, but also a nozzle structure with a certain frequency can be designed.

PIV에 의한 수중램제트추진의 기본특성에 관한 연구 (A Study on Fundamental Characteristics of Underwater Ram-Jet Propulsion by PIV)

  • 양창조;김춘식;최민선;김진구;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권3호
    • /
    • pp.36-42
    • /
    • 2000
  • A fundamental experimental study for an alternative proposal to super-speed craft propulsion system called underwater ram-jet propulsion by high pressure air ejection as driving force was investigated. For basic study of the effects of ram-jet propulsion performance, a simple underwater ram-jet flow field was established and PIV(Particle Image Velocimetry) method was adopted to analyse the jet-induced flow appearing at ram intake, mixing chamber and nozzle. Some flow dynamics relating to the high-speed ram-jet effect were discussed for the basic understanding of the its propulsion principle.

  • PDF