• Title/Summary/Keyword: jet penetration

Search Result 125, Processing Time 0.022 seconds

Characteristics of Multi staged Combustion on a Double-cone Partial Premixed Nozzle (이중 콘형 부분 예혼합 GT 노즐의 다단 연소특성)

  • Kim, Han Seok;Cho, Ju Hyeong;Kim, Min Kuk;Hwang, Jeongjae;Lee, Won June
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • Experimental investigations were conducted to understand the multi-staged combustion characteristics of a swirl-stabilized double cone premixed burner nozzle used for industrial gas turbines for power generation. Multi-staged combustion is implemented by injecting the fuel through the existing manifold of the side slots as well as through the apex of the cone with two fuel injection angles which are slanted or axial. NOx and CO emissions, and wall temperature distributions were measured for various fuel distributions and operating conditions. Results show that NOx emissions are decreased when the fuel distribution to the apex is 3% of the total amount of fuel, which is due to more uniform fuel distribution inside the nozzle, hence less hot spots at the flame. NOx emissions are rather increased when the fuel distribution to the apex is 8% of the total amount of fuel for axial fuel injection by occurrence of flash back in premixing zone of burner.

Characteristic Study on Effect of the Vent Mixer to Supersonic Fuel-Air Mixing with Stereoscopic-PIV Method (3차원 PIV 기법을 사용한 벤트혼합기가 초음속 연료-공기 혼합에 미치는 특성 연구)

  • Kim, Chae-Hyoung;Jeung, In-Seuck;Choi, Byung-Il;Kouchi, Toshinori;Masuya, Goro
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.50-56
    • /
    • 2012
  • Vent mixer can provide main flow directly into a recirculation region downstream of the mixer to enhance fuel-air mixing efficiency. Based on experimental results of three-dimensional velocity, vorticity and turbulent kinetic energy obtained by a stereoscopic PIV method, the performance of the vent mixer was compared with that of the step mixer which was used as a basic model. Thick shear layers of the vent mixer induced the increase of the penetration height. The turbulent kinetic energy mainly distributed along a boundary layer between the main flow and the jet plume. This turbulent field activates mass transfer in a mixing region, leading to the mixing enhancement.

Influence of the Charged Explosives on the Steel Plate Cutting Performance in Bent-Shaped Charge Holder Blasting (드로잉 가공 성형폭약용기를 이용한 강재구조 발파공법에서 사용폭약의 종류가 절단성능에 미치는 영향)

  • Kim, Gyeong-Gyu;Park, Hoon;Min, Gyeong-Jo;Shin, Chan-Hwi;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • As the national economic growth and the rapid increase in industrial structures are aging, the demand for removing steel structures is increasing, and research on improving the penetration performance of the linear shape charge explosives. In the study, numerical analyses were performed on the effect of the type of explosive used in the self-made shape charging container and the initiation method on the cutting performance of the steel plate and the effect on the shaped explosive installed close to it. ANSYS LS-DYNA, which can analyze the large deformation problem of materials due to explosion, was used, and an ALE(Arbitrary-Lagrange-Eulerian) model was applied that enables interlocking analysis of gases, liquids, and solid.

Study of hydrodynamics and iodine removal by self-priming venturi scrubber

  • Jawaria Ahad;Talha Rizwan ;Amjad Farooq ;Khalid Waheed ;Masroor Ahmad ;Kamran Rasheed Qureshi ;Waseem Siddique ;Naseem Irfan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.169-179
    • /
    • 2023
  • Filtered containment system is a passive safety system that controls the over-pressurization of containment in case of a design-based accidents by venting high pressure gaseous mixture, consisting of air, steam and radioactive particulate and gases like iodine, via a scrubbing system. An indigenous lab scale facility was developed for research on iodine removal by venturi scrubber by simulating the accidental scenario. A mixture of 0.2 % sodium thiosulphate and 0.5 % sodium hydroxide, was used in scrubbing column. A modified mathematical model was presented for iodine removal in venturi scrubber. Improvement in model was made by addition of important parameters like jet penetration length, bubble rise velocity and gas holdup which were not considered previously. Experiments were performed by varying hydrodynamic parameters like liquid level height and gas flow rates to see their effect on removal efficiency of iodine. Gas holdup was also measured for various liquid level heights and gas flowrates. Removal efficiency increased with increase in liquid level height and gas flowrate up to an optimum point beyond that efficiency was decreased. Experimental results of removal efficiency were compared with the predicted results, and they were found to be in good agreement. Maximum removal efficiency of 99.8% was obtained.

CPFD Simulation of Bubble Flow in a Bubbling Fluidized Bed with Shroud Nozzle Distributor and Vertical Internal (CPFD 시뮬레이션을 통한 Shroud 노즐 및 수직 구조물이 설치된 기포 유동층 반응기 내에서의 기포 흐름 해석)

  • Lim, Jong Hun;Bae, Keon;Shin, Jea Ho;Lee, Dong Ho;Han, Joo Hee;Lee, Dong Hyun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.678-686
    • /
    • 2016
  • The effect of internal and shroud nozzle distributor to bubbling fluidized beds which has the size of $0.3m-ID{\times}2.4m-high$ column was modeled by CPFD (Computational Particle-Fluid Dynamics). Metal-grade silicon particles (MG-Si) were used as bed materials which have $d_p=149{\mu}m$, ${\rho}_p=2,325kg/m^3$ and $U_{mf}=0.02m/s$. Total bed inventory and static bed height were 75 kg and 0.8 m, respectively. Effect of vertical internal on the bubble rising velocity was investigated. Bubbles were split by internal when the axial position of the internal from the distributor, z = 0.45 m. Bed pressure drop and axial solid holdup were not affected by internal. However, in the case that axial distance of internal from distributor was too close to jet penetration length, bubbles were not separated and bypassed internal, and faster than without internal or z = 0.45 m.